abstract class FeatureSpec extends FeatureSpecLike
A sister class to org.scalatest.FeatureSpec that can pass a fixture object into its tests.
Recommended Usage:
Use class fixture.FeatureSpec in situations for which FeatureSpec
would be a good choice, when all or most tests need the same fixture objects
that must be cleaned up afterwards. Note: fixture.FeatureSpec is intended for use in special situations, with class FeatureSpec used for general needs. For
more insight into where fixture.FeatureSpec fits in the big picture, see the withFixture(OneArgTest) subsection of the Shared fixtures section in the documentation for class FeatureSpec.
|
Class fixture.FeatureSpec behaves similarly to class org.scalatest.FeatureSpec, except that tests may have a
fixture parameter. The type of the
fixture parameter is defined by the abstract FixtureParam type, which is a member of this class.
This trait also has an abstract withFixture method. This withFixture method
takes a OneArgTest, which is a nested trait defined as a member of this class.
OneArgTest has an apply method that takes a FixtureParam.
This apply method is responsible for running a test.
This class's runTest method delegates the actual running of each test to withFixture(OneArgTest), passing
in the test code to run via the OneArgTest argument. The withFixture(OneArgTest) method (abstract in this class) is responsible
for creating the fixture argument and passing it to the test function.
Subclasses of this class must, therefore, do three things differently from a plain old org.scalatest.FeatureSpec:
- define the type of the fixture parameter by specifying type
FixtureParam - define the
withFixture(OneArgTest)method - write tests that take a fixture parameter
- (You can also define tests that don't take a fixture parameter.)
If the fixture you want to pass into your tests consists of multiple objects, you will need to combine them into one object to use this class. One good approach to passing multiple fixture objects is to encapsulate them in a case class. Here's an example:
case class FixtureParam(file: File, writer: FileWriter)
To enable the stacking of traits that define withFixture(NoArgTest), it is a good idea to let
withFixture(NoArgTest) invoke the test function instead of invoking the test
function directly. To do so, you'll need to convert the OneArgTest to a NoArgTest. You can do that by passing
the fixture object to the toNoArgTest method of OneArgTest. In other words, instead of
writing “test(theFixture)”, you'd delegate responsibility for
invoking the test function to the withFixture(NoArgTest) method of the same instance by writing:
withFixture(test.toNoArgTest(theFixture))
Here's a complete example:
package org.scalatest.examples.featurespec.oneargtest
import org.scalatest.fixture import java.io._
class ExampleSpec extends fixture.FeatureSpec {
case class FixtureParam(file: File, writer: FileWriter)
def withFixture(test: OneArgTest) = {
// create the fixture val file = File.createTempFile("hello", "world") val writer = new FileWriter(file) val theFixture = FixtureParam(file, writer)
try { writer.write("ScalaTest is designed to be ") // set up the fixture withFixture(test.toNoArgTest(theFixture)) // "loan" the fixture to the test } finally writer.close() // clean up the fixture }
feature("Simplicity") { scenario("User needs to read test code written by others") { f => f.writer.write("encourage clear code!") f.writer.flush() assert(f.file.length === 49) }
scenario("User needs to understand what the tests are doing") { f => f.writer.write("be easy to reason about!") f.writer.flush() assert(f.file.length === 52) } } }
If a test fails, the OneArgTest function will result in a Failed wrapping the exception describing the failure.
To ensure clean up happens even if a test fails, you should invoke the test function from inside a try block and do the cleanup in a
finally clause, as shown in the previous example.
Sharing fixtures across classes
If multiple test classes need the same fixture, you can define the FixtureParam and withFixture(OneArgTest) implementations
in a trait, then mix that trait into the test classes that need it. For example, if your application requires a database and your integration tests
use that database, you will likely have many test classes that need a database fixture. You can create a "database fixture" trait that creates a
database with a unique name, passes the connector into the test, then removes the database once the test completes. This is shown in the following example:
package org.scalatest.examples.fixture.featurespec.sharing
import java.util.concurrent.ConcurrentHashMap import org.scalatest.fixture import DbServer._ import java.util.UUID.randomUUID
object DbServer { // Simulating a database server type Db = StringBuffer private val databases = new ConcurrentHashMap[String, Db] def createDb(name: String): Db = { val db = new StringBuffer databases.put(name, db) db } def removeDb(name: String) { databases.remove(name) } }
trait DbFixture { this: fixture.Suite =>
type FixtureParam = Db
// Allow clients to populate the database after // it is created def populateDb(db: Db) {}
def withFixture(test: OneArgTest) { val dbName = randomUUID.toString val db = createDb(dbName) // create the fixture try { populateDb(db) // setup the fixture withFixture(test.toNoArgTest(db)) // "loan" the fixture to the test } finally removeDb(dbName) // clean up the fixture } }
class ExampleSpec extends fixture.FeatureSpec with DbFixture {
override def populateDb(db: Db) { // setup the fixture db.append("ScalaTest is designed to ") }
feature("Simplicity") {
scenario("User needs to read test code written by others") { db => db.append("encourage clear code!") assert(db.toString === "ScalaTest is designed to encourage clear code!") }
scenario("User needs to understand what the tests are doing") { db => db.append("be easy to reason about!") assert(db.toString === "ScalaTest is designed to be easy to reason about!") }
scenario("User needs to write tests") { () => val buf = new StringBuffer buf.append("ScalaTest is designed to be ") buf.append("easy to learn!") assert(buf.toString === "ScalaTest is designed to be easy to learn!") } } }
Often when you create fixtures in a trait like DbFixture, you'll still need to enable individual test classes
to "setup" a newly created fixture before it gets passed into the tests. A good way to accomplish this is to pass the newly
created fixture into a setup method, like populateDb in the previous example, before passing it to the test
function. Classes that need to perform such setup can override the method, as does ExampleSpec.
If a test doesn't need the fixture, you can indicate that by providing a no-arg instead of a one-arg function, as is done in the
third test in the previous example, “Test code should be clear”. In other words, instead of starting your function literal
with something like “db =>”, you'd start it with “() =>”. For such tests, runTest
will not invoke withFixture(OneArgTest). It will instead directly invoke withFixture(NoArgTest).
Both examples shown above demonstrate the technique of giving each test its own "fixture sandbox" to play in. When your fixtures
involve external side-effects, like creating files or databases, it is a good idea to give each file or database a unique name as is
done in these examples. This keeps tests completely isolated, allowing you to run them in parallel if desired. You could mix
ParallelTestExecution into either of these ExampleSpec classes, and the tests would run in parallel just fine.
- Source
- FeatureSpec.scala
- Alphabetic
- By Inheritance
- FeatureSpec
- FeatureSpecLike
- Documenting
- Alerting
- Notifying
- Informing
- TestRegistration
- TestSuite
- TestSuite
- Suite
- Suite
- Serializable
- Serializable
- Assertions
- TripleEquals
- TripleEqualsSupport
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
- new FeatureSpec()
Type Members
-
class
AssertionsHelper extends AnyRef
Helper class used by code generated by the
assertmacro.Helper class used by code generated by the
assertmacro.- Definition Classes
- Assertions
-
trait
NoArgTest extends () ⇒ Outcome with TestData
A test function taking no arguments and returning an
Outcome.A test function taking no arguments and returning an
Outcome.For more detail and examples, see the relevant section in the documentation for trait
fixture.FlatSpec.- Attributes
- protected
- Definition Classes
- TestSuite
-
class
CheckingEqualizer[L] extends AnyRef
- Definition Classes
- TripleEqualsSupport
-
class
Equalizer[L] extends AnyRef
- Definition Classes
- TripleEqualsSupport
-
abstract
type
FixtureParam
The type of the fixture parameter that can be passed into tests in this suite.
The type of the fixture parameter that can be passed into tests in this suite.
- Attributes
- protected
- Definition Classes
- Suite
-
class
ResultOfIgnoreInvocation extends AnyRef
- Definition Classes
- FeatureSpecLike
-
class
ResultOfScenarioInvocation extends AnyRef
- Definition Classes
- FeatureSpecLike
-
trait
OneArgTest extends (FixtureParam) ⇒ Outcome with TestData
A test function taking a fixture parameter and returning an
Outcome.A test function taking a fixture parameter and returning an
Outcome.For more detail and examples, see the documentation for trait
fixture.FlatSpec.- Attributes
- protected
- Definition Classes
- TestSuite
Abstract Value Members
-
abstract
def
withFixture(test: OneArgTest): Outcome
Run the passed test function with a fixture created by this method.
Run the passed test function with a fixture created by this method.
This method should create the fixture object needed by the tests of the current suite, invoke the test function (passing in the fixture object), and if needed, perform any clean up needed after the test completes. For more detail and examples, see the main documentation for this trait.
- test
the
OneArgTestto invoke, passing in a fixture- returns
an instance of
Outcome
- Attributes
- protected
- Definition Classes
- TestSuite
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
!==[T](right: Spread[T]): TripleEqualsInvocationOnSpread[T]
- Definition Classes
- TripleEqualsSupport
-
def
!==(right: Null): TripleEqualsInvocation[Null]
- Definition Classes
- TripleEqualsSupport
-
def
!==[T](right: T): TripleEqualsInvocation[T]
- Definition Classes
- TripleEqualsSupport
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
===[T](right: Spread[T]): TripleEqualsInvocationOnSpread[T]
- Definition Classes
- TripleEqualsSupport
-
def
===(right: Null): TripleEqualsInvocation[Null]
- Definition Classes
- TripleEqualsSupport
-
def
===[T](right: T): TripleEqualsInvocation[T]
- Definition Classes
- TripleEqualsSupport
-
def
alert: Alerter
Returns an
Alerterthat during test execution will forward strings (and other objects) passed to itsapplymethod to the current reporter.Returns an
Alerterthat during test execution will forward strings (and other objects) passed to itsapplymethod to the current reporter. If invoked in a constructor, it will register the passed string for forwarding later during test execution. If invoked while thisFeatureSpecis being executed, such as from inside a test function, it will forward the information to the current reporter immediately. If invoked at any other time, it will print to the standard output. This method can be called safely by any thread.- Attributes
- protected
- Definition Classes
- FeatureSpecLike → Alerting
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
macro
def
assert(condition: Boolean, clue: Any)(implicit prettifier: Prettifier, pos: Position): Assertion
Assert that a boolean condition, described in
Stringmessage, is true.Assert that a boolean condition, described in
Stringmessage, is true. If the condition istrue, this method returns normally. Else, it throwsTestFailedExceptionwith a helpful error message appended with theStringobtained by invokingtoStringon the specifiedclueas the exception's detail message.This method is implemented in terms of a Scala macro that will generate a more helpful error message for expressions of this form:
- assert(a == b, "a good clue")
- assert(a != b, "a good clue")
- assert(a === b, "a good clue")
- assert(a !== b, "a good clue")
- assert(a > b, "a good clue")
- assert(a >= b, "a good clue")
- assert(a < b, "a good clue")
- assert(a <= b, "a good clue")
- assert(a startsWith "prefix", "a good clue")
- assert(a endsWith "postfix", "a good clue")
- assert(a contains "something", "a good clue")
- assert(a eq b, "a good clue")
- assert(a ne b, "a good clue")
- assert(a > 0 && b > 5, "a good clue")
- assert(a > 0 || b > 5, "a good clue")
- assert(a.isEmpty, "a good clue")
- assert(!a.isEmpty, "a good clue")
- assert(a.isInstanceOf[String], "a good clue")
- assert(a.length == 8, "a good clue")
- assert(a.size == 8, "a good clue")
- assert(a.exists(_ == 8), "a good clue")
At this time, any other form of expression will just get a
TestFailedExceptionwith message saying the given expression was false. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the===that returnsBooleanto be the default in tests. This makes===consistent between tests and production code.- condition
the boolean condition to assert
- clue
An objects whose
toStringmethod returns a message to include in a failure report.
- Definition Classes
- Assertions
- Exceptions thrown
NullArgumentExceptionifmessageisnull.TestFailedExceptionif the condition isfalse.
-
macro
def
assert(condition: Boolean)(implicit prettifier: Prettifier, pos: Position): Assertion
Assert that a boolean condition is true.
Assert that a boolean condition is true. If the condition is
true, this method returns normally. Else, it throwsTestFailedException.This method is implemented in terms of a Scala macro that will generate a more helpful error message for expressions of this form:
- assert(a == b)
- assert(a != b)
- assert(a === b)
- assert(a !== b)
- assert(a > b)
- assert(a >= b)
- assert(a < b)
- assert(a <= b)
- assert(a startsWith "prefix")
- assert(a endsWith "postfix")
- assert(a contains "something")
- assert(a eq b)
- assert(a ne b)
- assert(a > 0 && b > 5)
- assert(a > 0 || b > 5)
- assert(a.isEmpty)
- assert(!a.isEmpty)
- assert(a.isInstanceOf[String])
- assert(a.length == 8)
- assert(a.size == 8)
- assert(a.exists(_ == 8))
At this time, any other form of expression will get a
TestFailedExceptionwith message saying the given expression was false. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the===that returnsBooleanto be the default in tests. This makes===consistent between tests and production code.- condition
the boolean condition to assert
- Definition Classes
- Assertions
- Exceptions thrown
TestFailedExceptionif the condition isfalse.
-
macro
def
assertCompiles(code: String)(implicit pos: Position): Assertion
Asserts that a given string snippet of code passes both the Scala parser and type checker.
Asserts that a given string snippet of code passes both the Scala parser and type checker.
You can use this to make sure a snippet of code compiles:
assertCompiles("val a: Int = 1")Although
assertCompilesis implemented with a macro that determines at compile time whether the snippet of code represented by the passed string compiles, errors (i.e., snippets of code that do not compile) are reported as test failures at runtime.- code
the snippet of code that should compile
- Definition Classes
- Assertions
-
macro
def
assertDoesNotCompile(code: String)(implicit pos: Position): Assertion
Asserts that a given string snippet of code does not pass either the Scala parser or type checker.
Asserts that a given string snippet of code does not pass either the Scala parser or type checker.
Often when creating libraries you may wish to ensure that certain arrangements of code that represent potential “user errors” do not compile, so that your library is more error resistant. ScalaTest's
Assertionstrait includes the following syntax for that purpose:assertDoesNotCompile("val a: String = \"a string")Although
assertDoesNotCompileis implemented with a macro that determines at compile time whether the snippet of code represented by the passed string doesn't compile, errors (i.e., snippets of code that do compile) are reported as test failures at runtime.Note that the difference between
assertTypeErrorandassertDoesNotCompileis thatassertDoesNotCompilewill succeed if the given code does not compile for any reason, whereasassertTypeErrorwill only succeed if the given code does not compile because of a type error. If the given code does not compile because of a syntax error, for example,assertDoesNotCompilewill return normally butassertTypeErrorwill throw aTestFailedException.- code
the snippet of code that should not type check
- Definition Classes
- Assertions
-
def
assertResult(expected: Any)(actual: Any)(implicit prettifier: Prettifier, pos: Position): Assertion
Assert that the value passed as
expectedequals the value passed asactual.Assert that the value passed as
expectedequals the value passed asactual. If theactualvalue equals theexpectedvalue (as determined by==),assertResultreturns normally. Else,assertResultthrows aTestFailedExceptionwhose detail message includes the expected and actual values.- expected
the expected value
- actual
the actual value, which should equal the passed
expectedvalue
- Definition Classes
- Assertions
- Exceptions thrown
TestFailedExceptionif the passedactualvalue does not equal the passedexpectedvalue.
-
def
assertResult(expected: Any, clue: Any)(actual: Any)(implicit prettifier: Prettifier, pos: Position): Assertion
Assert that the value passed as
expectedequals the value passed asactual.Assert that the value passed as
expectedequals the value passed asactual. If theactualequals theexpected(as determined by==),assertResultreturns normally. Else, ifactualis not equal toexpected,assertResultthrows aTestFailedExceptionwhose detail message includes the expected and actual values, as well as theStringobtained by invokingtoStringon the passedclue.- expected
the expected value
- clue
An object whose
toStringmethod returns a message to include in a failure report.- actual
the actual value, which should equal the passed
expectedvalue
- Definition Classes
- Assertions
- Exceptions thrown
TestFailedExceptionif the passedactualvalue does not equal the passedexpectedvalue.
-
def
assertThrows[T <: AnyRef](f: ⇒ Any)(implicit classTag: ClassTag[T], pos: Position): Assertion
Ensure that an expected exception is thrown by the passed function value.
Ensure that an expected exception is thrown by the passed function value. The thrown exception must be an instance of the type specified by the type parameter of this method. This method invokes the passed function. If the function throws an exception that's an instance of the specified type, this method returns
Succeeded. Else, whether the passed function returns normally or completes abruptly with a different exception, this method throwsTestFailedException.Note that the type specified as this method's type parameter may represent any subtype of
AnyRef, not justThrowableor one of its subclasses. In Scala, exceptions can be caught based on traits they implement, so it may at times make sense to specify a trait that the intercepted exception's class must mix in. If a class instance is passed for a type that could not possibly be used to catch an exception (such asString, for example), this method will complete abruptly with aTestFailedException.Also note that the difference between this method and
interceptis that this method does not return the expected exception, so it does not let you perform further assertions on that exception. Instead, this method returnsSucceeded, which means it can serve as the last statement in an async- or safe-style suite. It also indicates to the reader of the code that nothing further is expected about the thrown exception other than its type. The recommended usage is to useassertThrowsby default,interceptonly when you need to inspect the caught exception further.- f
the function value that should throw the expected exception
- classTag
an implicit
ClassTagrepresenting the type of the specified type parameter.- returns
the
Succeededsingleton, if an exception of the expected type is thrown
- Definition Classes
- Assertions
- Exceptions thrown
TestFailedExceptionif the passed function does not complete abruptly with an exception that's an instance of the specified type.
-
macro
def
assertTypeError(code: String)(implicit pos: Position): Assertion
Asserts that a given string snippet of code does not pass the Scala type checker, failing if the given snippet does not pass the Scala parser.
Asserts that a given string snippet of code does not pass the Scala type checker, failing if the given snippet does not pass the Scala parser.
Often when creating libraries you may wish to ensure that certain arrangements of code that represent potential “user errors” do not compile, so that your library is more error resistant. ScalaTest's
Assertionstrait includes the following syntax for that purpose:assertTypeError("val a: String = 1")Although
assertTypeErroris implemented with a macro that determines at compile time whether the snippet of code represented by the passed string type checks, errors (i.e., snippets of code that do type check) are reported as test failures at runtime.Note that the difference between
assertTypeErrorandassertDoesNotCompileis thatassertDoesNotCompilewill succeed if the given code does not compile for any reason, whereasassertTypeErrorwill only succeed if the given code does not compile because of a type error. If the given code does not compile because of a syntax error, for example,assertDoesNotCompilewill return normally butassertTypeErrorwill throw aTestFailedException.- code
the snippet of code that should not type check
- Definition Classes
- Assertions
-
val
assertionsHelper: AssertionsHelper
Helper instance used by code generated by macro assertion.
Helper instance used by code generated by macro assertion.
- Definition Classes
- Assertions
-
macro
def
assume(condition: Boolean, clue: Any)(implicit prettifier: Prettifier, pos: Position): Assertion
Assume that a boolean condition, described in
Stringmessage, is true.Assume that a boolean condition, described in
Stringmessage, is true. If the condition istrue, this method returns normally. Else, it throwsTestCanceledExceptionwith a helpful error message appended withStringobtained by invokingtoStringon the specifiedclueas the exception's detail message.This method is implemented in terms of a Scala macro that will generate a more helpful error message for expressions of this form:
- assume(a == b, "a good clue")
- assume(a != b, "a good clue")
- assume(a === b, "a good clue")
- assume(a !== b, "a good clue")
- assume(a > b, "a good clue")
- assume(a >= b, "a good clue")
- assume(a < b, "a good clue")
- assume(a <= b, "a good clue")
- assume(a startsWith "prefix", "a good clue")
- assume(a endsWith "postfix", "a good clue")
- assume(a contains "something", "a good clue")
- assume(a eq b, "a good clue")
- assume(a ne b, "a good clue")
- assume(a > 0 && b > 5, "a good clue")
- assume(a > 0 || b > 5, "a good clue")
- assume(a.isEmpty, "a good clue")
- assume(!a.isEmpty, "a good clue")
- assume(a.isInstanceOf[String], "a good clue")
- assume(a.length == 8, "a good clue")
- assume(a.size == 8, "a good clue")
- assume(a.exists(_ == 8), "a good clue")
At this time, any other form of expression will just get a
TestCanceledExceptionwith message saying the given expression was false. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the===that returnsBooleanto be the default in tests. This makes===consistent between tests and production code.- condition
the boolean condition to assume
- clue
An objects whose
toStringmethod returns a message to include in a failure report.
- Definition Classes
- Assertions
- Exceptions thrown
NullArgumentExceptionifmessageisnull.TestCanceledExceptionif the condition isfalse.
-
macro
def
assume(condition: Boolean)(implicit prettifier: Prettifier, pos: Position): Assertion
Assume that a boolean condition is true.
Assume that a boolean condition is true. If the condition is
true, this method returns normally. Else, it throwsTestCanceledException.This method is implemented in terms of a Scala macro that will generate a more helpful error message for expressions of this form:
- assume(a == b)
- assume(a != b)
- assume(a === b)
- assume(a !== b)
- assume(a > b)
- assume(a >= b)
- assume(a < b)
- assume(a <= b)
- assume(a startsWith "prefix")
- assume(a endsWith "postfix")
- assume(a contains "something")
- assume(a eq b)
- assume(a ne b)
- assume(a > 0 && b > 5)
- assume(a > 0 || b > 5)
- assume(a.isEmpty)
- assume(!a.isEmpty)
- assume(a.isInstanceOf[String])
- assume(a.length == 8)
- assume(a.size == 8)
- assume(a.exists(_ == 8))
At this time, any other form of expression will just get a
TestCanceledExceptionwith message saying the given expression was false. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the===that returnsBooleanto be the default in tests. This makes===consistent between tests and production code.- condition
the boolean condition to assume
- Definition Classes
- Assertions
- Exceptions thrown
TestCanceledExceptionif the condition isfalse.
-
def
cancel(cause: Throwable)(implicit pos: Position): Nothing
Throws
TestCanceledException, with the passedThrowablecause, to indicate a test failed.Throws
TestCanceledException, with the passedThrowablecause, to indicate a test failed. ThegetMessagemethod of the thrownTestCanceledExceptionwill returncause.toString.- cause
a
Throwablethat indicates the cause of the cancellation.
- Definition Classes
- Assertions
- Exceptions thrown
NullArgumentExceptionifcauseisnull
-
def
cancel(message: String, cause: Throwable)(implicit pos: Position): Nothing
Throws
TestCanceledException, with the passedStringmessageas the exception's detail message andThrowablecause, to indicate a test failed.Throws
TestCanceledException, with the passedStringmessageas the exception's detail message andThrowablecause, to indicate a test failed.- message
A message describing the failure.
- cause
A
Throwablethat indicates the cause of the failure.
- Definition Classes
- Assertions
- Exceptions thrown
NullArgumentExceptionifmessageorcauseisnull
-
def
cancel(message: String)(implicit pos: Position): Nothing
Throws
TestCanceledException, with the passedStringmessageas the exception's detail message, to indicate a test was canceled.Throws
TestCanceledException, with the passedStringmessageas the exception's detail message, to indicate a test was canceled.- message
A message describing the cancellation.
- Definition Classes
- Assertions
- Exceptions thrown
NullArgumentExceptionifmessageisnull
-
def
cancel()(implicit pos: Position): Nothing
Throws
TestCanceledExceptionto indicate a test was canceled.Throws
TestCanceledExceptionto indicate a test was canceled.- Definition Classes
- Assertions
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
conversionCheckedConstraint[A, B](implicit equivalenceOfA: Equivalence[A], cnv: (B) ⇒ A): CanEqual[A, B]
- Definition Classes
- TripleEquals → TripleEqualsSupport
-
def
convertEquivalenceToAToBConstraint[A, B](equivalenceOfB: Equivalence[B])(implicit ev: <:<[A, B]): CanEqual[A, B]
- Definition Classes
- TripleEquals → TripleEqualsSupport
-
def
convertEquivalenceToAToBConversionConstraint[A, B](equivalenceOfB: Equivalence[B])(implicit ev: (A) ⇒ B): CanEqual[A, B]
- Definition Classes
- TripleEquals → TripleEqualsSupport
-
def
convertEquivalenceToBToAConstraint[A, B](equivalenceOfA: Equivalence[A])(implicit ev: <:<[B, A]): CanEqual[A, B]
- Definition Classes
- TripleEquals → TripleEqualsSupport
-
def
convertEquivalenceToBToAConversionConstraint[A, B](equivalenceOfA: Equivalence[A])(implicit ev: (B) ⇒ A): CanEqual[A, B]
- Definition Classes
- TripleEquals → TripleEqualsSupport
-
implicit
def
convertPendingToFixtureFunction(f: ⇒ PendingStatement): (FixtureParam) ⇒ Any
Implicitly converts a function that takes no parameters and results in
PendingStatementto a function fromFixtureParamtoAny, to enable pending tests to registered as by-name parameters by methods that require a test function that takes aFixtureParam.Implicitly converts a function that takes no parameters and results in
PendingStatementto a function fromFixtureParamtoAny, to enable pending tests to registered as by-name parameters by methods that require a test function that takes aFixtureParam.This method makes it possible to write pending tests as simply
(pending), without needing to write(fixture => pending).- f
a function
- returns
a function of
FixtureParam => Any
- Attributes
- protected
- Definition Classes
- FeatureSpecLike
-
def
convertToCheckingEqualizer[T](left: T): CheckingEqualizer[T]
- Definition Classes
- TripleEquals → TripleEqualsSupport
-
implicit
def
convertToEqualizer[T](left: T): Equalizer[T]
- Definition Classes
- TripleEquals → TripleEqualsSupport
-
def
defaultEquality[A]: Equality[A]
- Definition Classes
- TripleEqualsSupport
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
execute(testName: String = null, configMap: ConfigMap = ConfigMap.empty, color: Boolean = true, durations: Boolean = false, shortstacks: Boolean = false, fullstacks: Boolean = false, stats: Boolean = false): Unit
Executes one or more tests in this
Suite, printing results to the standard output.Executes one or more tests in this
Suite, printing results to the standard output.This method invokes
runon itself, passing in values that can be configured via the parameters to this method, all of which have default values. This behavior is convenient when working with ScalaTest in the Scala interpreter. Here's a summary of this method's parameters and how you can use them:The
testNameparameterIf you leave
testNameat its default value (ofnull), this method will passNoneto thetestNameparameter ofrun, and as a result all the tests in this suite will be executed. If you specify atestName, this method will passSome(testName)torun, and only that test will be run. Thus to run all tests in a suite from the Scala interpreter, you can write:scala> (new ExampleSuite).execute()
(The above syntax actually invokes the overloaded parameterless form of
execute, which calls this form with its default parameter values.) To run just the test named"my favorite test"in a suite from the Scala interpreter, you would write:scala> (new ExampleSuite).execute("my favorite test")Or:
scala> (new ExampleSuite).execute(testName = "my favorite test")
The
configMapparameterIf you provide a value for the
configMapparameter, this method will pass it torun. If not, the default value of an emptyMapwill be passed. For more information on how to use a config map to configure your test suites, see the config map section in the main documentation for this trait. Here's an example in which you configure a run with the name of an input file:scala> (new ExampleSuite).execute(configMap = Map("inputFileName" -> "in.txt")The
colorparameterIf you leave the
colorparameter unspecified, this method will configure the reporter it passes torunto print to the standard output in color (via ansi escape characters). If you don't want color output, specify false forcolor, like this:scala> (new ExampleSuite).execute(color = false)
The
durationsparameterIf you leave the
durationsparameter unspecified, this method will configure the reporter it passes torunto not print durations for tests and suites to the standard output. If you want durations printed, specify true fordurations, like this:scala> (new ExampleSuite).execute(durations = true)
The
shortstacksandfullstacksparametersIf you leave both the
shortstacksandfullstacksparameters unspecified, this method will configure the reporter it passes torunto not print stack traces for failed tests if it has a stack depth that identifies the offending line of test code. If you prefer a short stack trace (10 to 15 stack frames) to be printed with any test failure, specify true forshortstacks:scala> (new ExampleSuite).execute(shortstacks = true)
For full stack traces, set
fullstacksto true:scala> (new ExampleSuite).execute(fullstacks = true)
If you specify true for both
shortstacksandfullstacks, you'll get full stack traces.The
statsparameterIf you leave the
statsparameter unspecified, this method will not fireRunStartingand eitherRunCompletedorRunAbortedevents to the reporter it passes torun. If you specify true forstats, this method will fire the run events to the reporter, and the reporter will print the expected test count before the run, and various statistics after, including the number of suites completed and number of tests that succeeded, failed, were ignored or marked pending. Here's how you get the stats:scala> (new ExampleSuite).execute(stats = true)
To summarize, this method will pass to
run:testName-Noneif this method'stestNameparameter is left at its default value ofnull, elseSome(testName).reporter- a reporter that prints to the standard outputstopper- aStopperwhoseapplymethod always returnsfalsefilter- aFilterconstructed withNonefortagsToIncludeandSet()fortagsToExcludeconfigMap- theconfigMappassed to this methoddistributor-Nonetracker- a newTracker
Note: In ScalaTest, the terms "execute" and "run" basically mean the same thing and can be used interchangably. The reason this method isn't named
runis that it takes advantage of default arguments, and you can't mix overloaded methods and default arguments in Scala. (If namedrun, this method would have the same name but different arguments than the mainrunmethod that takes seven arguments. Thus it would overload and couldn't be used with default argument values.)Design note: This method has two "features" that may seem unidiomatic. First, the default value of
testNameisnull. Normally in Scala the type oftestNamewould beOption[String]and the default value would beNone, as it is in this trait'srunmethod. Thenullvalue is used here for two reasons. First, in ScalaTest 1.5,executewas changed from four overloaded methods to one method with default values, taking advantage of the default and named parameters feature introduced in Scala 2.8. To not break existing source code,testNameneeded to have typeString, as it did in two of the overloadedexecutemethods prior to 1.5. The other reason is thatexecutehas always been designed to be called primarily from an interpeter environment, such as the Scala REPL (Read-Evaluate-Print-Loop). In an interpreter environment, minimizing keystrokes is king. AStringtype with anulldefault value lets users typesuite.execute("my test name")rather thansuite.execute(Some("my test name")), saving several keystrokes.The second non-idiomatic feature is that
shortstacksandfullstacksare all lower case rather than camel case. This is done to be consistent with theShell, which also uses those forms. The reason lower case is used in theShellis to save keystrokes in an interpreter environment. Most Unix commands, for example, are all lower case, making them easier and quicker to type. In the ScalaTestShell, methods likeshortstacks,fullstacks, andnostats, etc., are designed to be all lower case so they feel more like shell commands than methods.- testName
the name of one test to run.
- configMap
a
Mapof key-value pairs that can be used by the executingSuiteof tests.- color
a boolean that configures whether output is printed in color
- durations
a boolean that configures whether test and suite durations are printed to the standard output
- shortstacks
a boolean that configures whether short stack traces should be printed for test failures
- fullstacks
a boolean that configures whether full stack traces should be printed for test failures
- stats
a boolean that configures whether test and suite statistics are printed to the standard output
- Definition Classes
- Suite
- Exceptions thrown
IllegalArgumentExceptioniftestNameis defined, but no test with the specified test name exists in thisSuiteNullArgumentExceptionif the passedconfigMapparameter isnull.
-
def
expectedTestCount(filter: Filter): Int
The total number of tests that are expected to run when this
Suite'srunmethod is invoked.The total number of tests that are expected to run when this
Suite'srunmethod is invoked.This trait's implementation of this method returns the sum of:
- the size of the
testNamesList, minus the number of tests marked as ignored and any tests that are exluded by the passedFilter - the sum of the values obtained by invoking
expectedTestCounton every nestedSuitecontained innestedSuites
- filter
a
Filterwith which to filter tests to count based on their tags
- Definition Classes
- Suite
- the size of the
-
def
fail(cause: Throwable)(implicit pos: Position): Nothing
Throws
TestFailedException, with the passedThrowablecause, to indicate a test failed.Throws
TestFailedException, with the passedThrowablecause, to indicate a test failed. ThegetMessagemethod of the thrownTestFailedExceptionwill returncause.toString.- cause
a
Throwablethat indicates the cause of the failure.
- Definition Classes
- Assertions
- Exceptions thrown
NullArgumentExceptionifcauseisnull
-
def
fail(message: String, cause: Throwable)(implicit pos: Position): Nothing
Throws
TestFailedException, with the passedStringmessageas the exception's detail message andThrowablecause, to indicate a test failed.Throws
TestFailedException, with the passedStringmessageas the exception's detail message andThrowablecause, to indicate a test failed.- message
A message describing the failure.
- cause
A
Throwablethat indicates the cause of the failure.
- Definition Classes
- Assertions
- Exceptions thrown
NullArgumentExceptionifmessageorcauseisnull
-
def
fail(message: String)(implicit pos: Position): Nothing
Throws
TestFailedException, with the passedStringmessageas the exception's detail message, to indicate a test failed.Throws
TestFailedException, with the passedStringmessageas the exception's detail message, to indicate a test failed.- message
A message describing the failure.
- Definition Classes
- Assertions
- Exceptions thrown
NullArgumentExceptionifmessageisnull
-
def
fail()(implicit pos: Position): Nothing
Throws
TestFailedExceptionto indicate a test failed.Throws
TestFailedExceptionto indicate a test failed.- Definition Classes
- Assertions
-
def
feature(description: String)(fun: ⇒ Unit)(implicit pos: Position): Unit
Describe a “subject” being specified and tested by the passed function value.
Describe a “subject” being specified and tested by the passed function value. The passed function value may contain more describers (defined with
describe) and/or tests (defined withit). This trait's implementation of this method will register the description string and immediately invoke the passed function.- description
the description text
- Attributes
- protected
- Definition Classes
- FeatureSpecLike
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
ignore(specText: String, testTags: Tag*): ResultOfIgnoreInvocation
Register a test to ignore, which has the given spec text, optional tags, and test function value that takes no arguments.
Register a test to ignore, which has the given spec text, optional tags, and test function value that takes no arguments. This method will register the test for later ignoring via an invocation of one of the
executemethods. This method exists to make it easy to ignore an existing test by changing the call toittoignorewithout deleting or commenting out the actual test code. The test will not be executed, but a report will be sent that indicates the test was ignored. The name of the test will be a concatenation of the text of all surrounding describers, from outside in, and the passed spec text, with one space placed between each item. (See the documenation fortestNamesfor an example.) The resulting test name must not have been registered previously on thisFeatureSpecinstance.- specText
the specification text, which will be combined with the descText of any surrounding describers to form the test name
- testTags
the optional list of tags for this test
- Attributes
- protected
- Definition Classes
- FeatureSpecLike
- Exceptions thrown
DuplicateTestNameExceptionif a test with the same name has been registered previouslyNullArgumentExceptionifspecTextor any passed test tag isnullTestRegistrationClosedExceptionif invoked afterrunhas been invoked on this suite
-
def
info: Informer
Returns an
Informerthat during test execution will forward strings passed to itsapplymethod to the current reporter.Returns an
Informerthat during test execution will forward strings passed to itsapplymethod to the current reporter. If invoked in a constructor, it will register the passed string for forwarding later during test execution. If invoked from inside a scope, it will forward the information to the current reporter immediately. If invoked from inside a test function, it will record the information and forward it to the current reporter only after the test completed, asrecordedEventsof the test completed event, such asTestSucceeded. If invoked at any other time, it will print to the standard output. This method can be called safely by any thread.- Attributes
- protected
- Definition Classes
- FeatureSpecLike → Informing
-
def
intercept[T <: AnyRef](f: ⇒ Any)(implicit classTag: ClassTag[T], pos: Position): T
Intercept and return an exception that's expected to be thrown by the passed function value.
Intercept and return an exception that's expected to be thrown by the passed function value. The thrown exception must be an instance of the type specified by the type parameter of this method. This method invokes the passed function. If the function throws an exception that's an instance of the specified type, this method returns that exception. Else, whether the passed function returns normally or completes abruptly with a different exception, this method throws
TestFailedException.Note that the type specified as this method's type parameter may represent any subtype of
AnyRef, not justThrowableor one of its subclasses. In Scala, exceptions can be caught based on traits they implement, so it may at times make sense to specify a trait that the intercepted exception's class must mix in. If a class instance is passed for a type that could not possibly be used to catch an exception (such asString, for example), this method will complete abruptly with aTestFailedException.Also note that the difference between this method and
assertThrowsis that this method returns the expected exception, so it lets you perform further assertions on that exception. By contrast, theassertThrowsmethod returnsSucceeded, which means it can serve as the last statement in an async- or safe-style suite.assertThrowsalso indicates to the reader of the code that nothing further is expected about the thrown exception other than its type. The recommended usage is to useassertThrowsby default,interceptonly when you need to inspect the caught exception further.- f
the function value that should throw the expected exception
- classTag
an implicit
ClassTagrepresenting the type of the specified type parameter.- returns
the intercepted exception, if it is of the expected type
- Definition Classes
- Assertions
- Exceptions thrown
TestFailedExceptionif the passed function does not complete abruptly with an exception that's an instance of the specified type.
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
lowPriorityConversionCheckedConstraint[A, B](implicit equivalenceOfB: Equivalence[B], cnv: (A) ⇒ B): CanEqual[A, B]
- Definition Classes
- TripleEquals → TripleEqualsSupport
-
def
lowPriorityTypeCheckedConstraint[A, B](implicit equivalenceOfB: Equivalence[B], ev: <:<[A, B]): CanEqual[A, B]
- Definition Classes
- TripleEquals → TripleEqualsSupport
-
def
markup: Documenter
Returns a
Documenterthat during test execution will forward strings passed to itsapplymethod to the current reporter.Returns a
Documenterthat during test execution will forward strings passed to itsapplymethod to the current reporter. If invoked in a constructor, it will register the passed string for forwarding later during test execution. If invoked from inside a scope, it will forward the information to the current reporter immediately. If invoked from inside a test function, it will record the information and forward it to the current reporter only after the test completed, asrecordedEventsof the test completed event, such asTestSucceeded. If invoked at any other time, it will print to the standard output. This method can be called safely by any thread.- Attributes
- protected
- Definition Classes
- FeatureSpecLike → Documenting
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
nestedSuites: IndexedSeq[scalatest.Suite]
An immutable
IndexedSeqof thisSuiteobject's nestedSuites.An immutable
IndexedSeqof thisSuiteobject's nestedSuites. If thisSuitecontains no nestedSuites, this method returns an emptyIndexedSeq. This trait's implementation of this method returns an emptyList.- Definition Classes
- Suite
-
def
note: Notifier
Returns a
Notifierthat during test execution will forward strings (and other objects) passed to itsapplymethod to the current reporter.Returns a
Notifierthat during test execution will forward strings (and other objects) passed to itsapplymethod to the current reporter. If invoked in a constructor, it will register the passed string for forwarding later during test execution. If invoked while thisFeatureSpecis being executed, such as from inside a test function, it will forward the information to the current reporter immediately. If invoked at any other time, it will print to the standard output. This method can be called safely by any thread.- Attributes
- protected
- Definition Classes
- FeatureSpecLike → Notifying
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
pending: Assertion with PendingStatement
Throws
TestPendingExceptionto indicate a test is pending.Throws
TestPendingExceptionto indicate a test is pending.A pending test is one that has been given a name but is not yet implemented. The purpose of pending tests is to facilitate a style of testing in which documentation of behavior is sketched out before tests are written to verify that behavior (and often, the before the behavior of the system being tested is itself implemented). Such sketches form a kind of specification of what tests and functionality to implement later.
To support this style of testing, a test can be given a name that specifies one bit of behavior required by the system being tested. The test can also include some code that sends more information about the behavior to the reporter when the tests run. At the end of the test, it can call method
pending, which will cause it to complete abruptly withTestPendingException. Because tests in ScalaTest can be designated as pending withTestPendingException, both the test name and any information sent to the reporter when running the test can appear in the report of a test run. (In other words, the code of a pending test is executed just like any other test.) However, because the test completes abruptly withTestPendingException, the test will be reported as pending, to indicate the actual test, and possibly the functionality it is intended to test, has not yet been implemented.Note: This method always completes abruptly with a
TestPendingException. Thus it always has a side effect. Methods with side effects are usually invoked with parentheses, as inpending(). This method is defined as a parameterless method, in flagrant contradiction to recommended Scala style, because it forms a kind of DSL for pending tests. It enables tests in suites such asFunSuiteorFunSpecto be denoted by placing "(pending)" after the test name, as in:test("that style rules are not laws") (pending)Readers of the code see "pending" in parentheses, which looks like a little note attached to the test name to indicate it is pending. Whereas "
(pending())looks more like a method call, "(pending)" lets readers stay at a higher level, forgetting how it is implemented and just focusing on the intent of the programmer who wrote the code.- Definition Classes
- Assertions
-
def
pendingUntilFixed(f: ⇒ Unit)(implicit pos: Position): Assertion with PendingStatement
Execute the passed block of code, and if it completes abruptly, throw
TestPendingException, else throwTestFailedException.Execute the passed block of code, and if it completes abruptly, throw
TestPendingException, else throwTestFailedException.This method can be used to temporarily change a failing test into a pending test in such a way that it will automatically turn back into a failing test once the problem originally causing the test to fail has been fixed. At that point, you need only remove the
pendingUntilFixedcall. In other words, apendingUntilFixedsurrounding a block of code that isn't broken is treated as a test failure. The motivation for this behavior is to encourage people to removependingUntilFixedcalls when there are no longer needed.This method facilitates a style of testing in which tests are written before the code they test. Sometimes you may encounter a test failure that requires more functionality than you want to tackle without writing more tests. In this case you can mark the bit of test code causing the failure with
pendingUntilFixed. You can then write more tests and functionality that eventually will get your production code to a point where the original test won't fail anymore. At this point the code block marked withpendingUntilFixedwill no longer throw an exception (because the problem has been fixed). This will in turn causependingUntilFixedto throwTestFailedExceptionwith a detail message explaining you need to go back and remove thependingUntilFixedcall as the problem orginally causing your test code to fail has been fixed.- f
a block of code, which if it completes abruptly, should trigger a
TestPendingException
- Definition Classes
- Assertions
- Exceptions thrown
TestPendingExceptionif the passed block of code completes abruptly with anExceptionorAssertionError
-
final
def
registerIgnoredTest(testText: String, testTags: Tag*)(testFun: (FixtureParam) ⇒ Any)(implicit pos: Position): Unit
Registers an ignored test.
Registers an ignored test.
- testText
the test text
- testTags
the test tags
- testFun
the test function
- Definition Classes
- FeatureSpecLike → TestRegistration
-
final
def
registerTest(testText: String, testTags: Tag*)(testFun: (FixtureParam) ⇒ Any)(implicit pos: Position): Unit
Registers a test.
Registers a test.
- testText
the test text
- testTags
the test tags
- testFun
the test function
- Definition Classes
- FeatureSpecLike → TestRegistration
-
def
rerunner: Option[String]
The fully qualified class name of the rerunner to rerun this suite.
The fully qualified class name of the rerunner to rerun this suite. This implementation will look at this.getClass and see if it is either an accessible Suite, or it has a WrapWith annotation. If so, it returns the fully qualified class name wrapped in a Some, or else it returns None.
- Definition Classes
- Suite
-
def
run(testName: Option[String], args: Args): Status
Runs this suite of tests.
Runs this suite of tests.
If
testNameisNone, this trait's implementation of this method calls these two methods on this object in this order:runNestedSuitesrunTests
If
testNameis defined, then this trait's implementation of this method callsrunTests, but does not callrunNestedSuites. This behavior is part of the contract of this method. Subclasses that overriderunmust take care not to callrunNestedSuitesiftestNameis defined. (TheOneInstancePerTesttrait depends on this behavior, for example.)Subclasses and subtraits that override this
runmethod can implement them without invoking either therunTestsorrunNestedSuitesmethods, which are invoked by this trait's implementation of this method. It is recommended, but not required, that subclasses and subtraits that overriderunin a way that does not invokerunNestedSuitesalso overriderunNestedSuitesand make it final. Similarly it is recommended, but not required, that subclasses and subtraits that overriderunin a way that does not invokerunTestsalso overriderunTests(andrunTest, which this trait's implementation ofrunTestscalls) and make it final. The implementation of these final methods can either invoke the superclass implementation of the method, or throw anUnsupportedOperationExceptionif appropriate. The reason for this recommendation is that ScalaTest includes several traits that override these methods to allow behavior to be mixed into aSuite. For example, traitBeforeAndAfterEachoverridesrunTestss. In aSuitesubclass that no longer invokesrunTestsfromrun, theBeforeAndAfterEachtrait is not applicable. Mixing it in would have no effect. By makingrunTestsfinal in such aSuitesubtrait, you make the attempt to mixBeforeAndAfterEachinto a subclass of your subtrait a compiler error. (It would fail to compile with a complaint thatBeforeAndAfterEachis trying to overriderunTests, which is a final method in your trait.)- testName
an optional name of one test to run. If
None, all relevant tests should be run. I.e.,Noneacts like a wildcard that means run all relevant tests in thisSuite.- args
the
Argsfor this run- returns
a
Statusobject that indicates when all tests and nested suites started by this method have completed, and whether or not a failure occurred.
- Definition Classes
- FeatureSpecLike → Suite
- Exceptions thrown
IllegalArgumentExceptioniftestNameis defined, but no test with the specified test name exists in thisSuiteNullArgumentExceptionif any passed parameter isnull.
-
def
runNestedSuites(args: Args): Status
Run zero to many of this
Suite's nestedSuites.Run zero to many of this
Suite's nestedSuites.If the passed
distributorisNone, this trait's implementation of this method invokesrunon each nestedSuitein theListobtained by invokingnestedSuites. If a nestedSuite'srunmethod completes abruptly with an exception, this trait's implementation of this method reports that theSuiteaborted and attempts to run the next nestedSuite. If the passeddistributoris defined, this trait's implementation puts each nestedSuiteinto theDistributorcontained in theSome, in the order in which theSuites appear in theListreturned bynestedSuites, passing in a newTrackerobtained by invokingnextTrackeron theTrackerpassed to this method.Implementations of this method are responsible for ensuring
SuiteStartingevents are fired to theReporterbefore executing any nestedSuite, and eitherSuiteCompletedorSuiteAbortedafter executing any nestedSuite.- args
the
Argsfor this run- returns
a
Statusobject that indicates when all nested suites started by this method have completed, and whether or not a failure occurred.
- Attributes
- protected
- Definition Classes
- Suite
- Exceptions thrown
NullArgumentExceptionif any passed parameter isnull.
-
def
runTest(testName: String, args: Args): Status
Run a test.
Run a test. This trait's implementation runs the test registered with the name specified by
testName. Each test's name is a concatenation of the text of all describers surrounding a test, from outside in, and the test's spec text, with one space placed between each item. (See the documenation fortestNamesfor an example.)- testName
the name of one test to execute.
- args
the
Argsfor this run- returns
a
Statusobject that indicates when the test started by this method has completed, and whether or not it failed .
- Attributes
- protected
- Definition Classes
- FeatureSpecLike → TestSuite → Suite
- Exceptions thrown
NullArgumentExceptioniftestName,reporter,stopper, orconfigMapisnull.
-
def
runTests(testName: Option[String], args: Args): Status
Run zero to many of this
FeatureSpec's tests.Run zero to many of this
FeatureSpec's tests.This method takes a
testNameparameter that optionally specifies a test to invoke. IftestNameisSome, this trait's implementation of this method invokesrunTeston this object with passedargs.This method takes an
argsthat contains aSetof tag names that should be included (tagsToInclude), and aSetthat should be excluded (tagsToExclude), when deciding which of thisSuite's tests to execute. IftagsToIncludeis empty, all tests will be executed except those those belonging to tags listed in thetagsToExcludeSet. IftagsToIncludeis non-empty, only tests belonging to tags mentioned intagsToInclude, and not mentioned intagsToExcludewill be executed. However, iftestNameisSome,tagsToIncludeandtagsToExcludeare essentially ignored. Only iftestNameisNonewilltagsToIncludeandtagsToExcludebe consulted to determine which of the tests named in thetestNamesSetshould be run. For more information on trait tags, see the main documentation for this trait.If
testNameisNone, this trait's implementation of this method invokestestNameson thisSuiteto get aSetof names of tests to potentially execute. (AtestNamesvalue ofNoneessentially acts as a wildcard that means all tests in thisSuitethat are selected bytagsToIncludeandtagsToExcludeshould be executed.) For each test in thetestNameSet, in the order they appear in the iterator obtained by invoking theelementsmethod on theSet, this trait's implementation of this method checks whether the test should be run based on thetagsToIncludeandtagsToExcludeSets. If so, this implementation invokesrunTestwith passed inargs.- testName
an optional name of one test to execute. If
None, all relevant tests should be executed. I.e.,Noneacts like a wildcard that means execute all relevant tests in thisfixture.FeatureSpec.- args
the
Argsfor this run- returns
a
Statusobject that indicates when all tests started by this method have completed, and whether or not a failure occurred.
- Attributes
- protected
- Definition Classes
- FeatureSpecLike → Suite
- Exceptions thrown
NullArgumentExceptionif any oftestNameorargsisnull.
-
def
scenario(specText: String, testTags: Tag*): ResultOfScenarioInvocation
Register a test with the given spec text, optional tags, and test function value that takes no arguments.
Register a test with the given spec text, optional tags, and test function value that takes no arguments. An invocation of this method is called an “example.”
This method will register the test for later execution via an invocation of one of the
executemethods. The name of the test will be a concatenation of the text of all surrounding describers, from outside in, and the passed spec text, with one space placed between each item. (See the documenation fortestNamesfor an example.) The resulting test name must not have been registered previously on thisFeatureSpecinstance.- specText
the specification text, which will be combined with the descText of any surrounding describers to form the test name
- testTags
the optional list of tags for this test
- Attributes
- protected
- Definition Classes
- FeatureSpecLike
- Exceptions thrown
DuplicateTestNameExceptionif a test with the same name has been registered previouslyNullArgumentExceptionifspecTextor any passed test tag isnullTestRegistrationClosedExceptionif invoked afterrunhas been invoked on this suite
-
def
scenariosFor(unit: Unit): Unit
Registers shared scenarios.
Registers shared scenarios.
This method enables the following syntax for shared scenarios in a
FeatureSpec:scenariosFor(nonEmptyStack(lastValuePushed))
This method just provides syntax sugar intended to make the intent of the code clearer. Because the parameter passed to it is type
Unit, the expression will be evaluated before being passed, which is sufficient to register the shared scenarios. For examples of shared scenarios, see the Shared scenarios section in the main documentation for traitFeatureSpec.- Attributes
- protected
- Definition Classes
- FeatureSpecLike
-
final
val
styleName: String
Suite style name.
Suite style name.
- returns
org.scalatest.fixture.FeatureSpec
- Definition Classes
- FeatureSpecLike → Suite → Suite
-
final
val
succeed: Assertion
The
Succeededsingleton.The
Succeededsingleton.You can use
succeedto solve a type error when an async test does not end in eitherFuture[Assertion]orAssertion. BecauseAssertionis a type alias forSucceeded.type, puttingsucceedat the end of a test body (or at the end of a function being used to map the final future of a test body) will solve the type error.- Definition Classes
- Assertions
-
def
suiteId: String
A string ID for this
Suitethat is intended to be unique among all suites reported during a run.A string ID for this
Suitethat is intended to be unique among all suites reported during a run.This trait's implementation of this method returns the fully qualified name of this object's class. Each suite reported during a run will commonly be an instance of a different
Suiteclass, and in such cases, this default implementation of this method will suffice. However, in special cases you may need to override this method to ensure it is unique for each reported suite. For example, if you write aSuitesubclass that reads in a file whose name is passed to its constructor and dynamically creates a suite of tests based on the information in that file, you will likely need to override this method in yourSuitesubclass, perhaps by appending the pathname of the file to the fully qualified class name. That way if you run a suite of tests based on a directory full of these files, you'll have unique suite IDs for each reported suite.The suite ID is intended to be unique, because ScalaTest does not enforce that it is unique. If it is not unique, then you may not be able to uniquely identify a particular test of a particular suite. This ability is used, for example, to dynamically tag tests as having failed in the previous run when rerunning only failed tests.
- returns
this
Suiteobject's ID.
- Definition Classes
- Suite
-
def
suiteName: String
A user-friendly suite name for this
Suite.A user-friendly suite name for this
Suite.This trait's implementation of this method returns the simple name of this object's class. This trait's implementation of
runNestedSuitescalls this method to obtain a name forReports to pass to thesuiteStarting,suiteCompleted, andsuiteAbortedmethods of theReporter.- returns
this
Suiteobject's suite name.
- Definition Classes
- Suite
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
tags: Map[String, Set[String]]
A
Mapwhose keys areStringtag names to which tests in thisFeatureSpecbelong, and values theSetof test names that belong to each tag.A
Mapwhose keys areStringtag names to which tests in thisFeatureSpecbelong, and values theSetof test names that belong to each tag. If thisFeatureSpeccontains no tags, this method returns an emptyMap.This trait's implementation returns tags that were passed as strings contained in
Tagobjects passed to methodstestandignore.In addition, this trait's implementation will also auto-tag tests with class level annotations. For example, if you annotate @Ignore at the class level, all test methods in the class will be auto-annotated with @Ignore.
- Definition Classes
- FeatureSpecLike → Suite
-
def
testDataFor(testName: String, theConfigMap: ConfigMap = ConfigMap.empty): TestData
Provides a
TestDatainstance for the passed test name, given the passed config map.Provides a
TestDatainstance for the passed test name, given the passed config map.This method is used to obtain a
TestDatainstance to pass towithFixture(NoArgTest)andwithFixture(OneArgTest)and thebeforeEachandafterEachmethods of traitBeforeAndAfterEach.- testName
the name of the test for which to return a
TestDatainstance- theConfigMap
the config map to include in the returned
TestData- returns
a
TestDatainstance for the specified test, which includes the specified config map
- Definition Classes
- FeatureSpecLike → Suite
-
def
testNames: Set[String]
An immutable
Setof test names.An immutable
Setof test names. If thisFeatureSpeccontains no tests, this method returns an emptySet.This trait's implementation of this method will return a set that contains the names of all registered tests. The set's iterator will return those names in the order in which the tests were registered. Each test's name is composed of the concatenation of the text of each surrounding describer, in order from outside in, and the text of the example itself, with all components separated by a space.
- returns
the
Setof test names
- Definition Classes
- FeatureSpecLike → Suite
-
def
toString(): String
Returns a user friendly string for this suite, composed of the simple name of the class (possibly simplified further by removing dollar signs if added by the Scala interpeter) and, if this suite contains nested suites, the result of invoking
toStringon each of the nested suites, separated by commas and surrounded by parentheses.Returns a user friendly string for this suite, composed of the simple name of the class (possibly simplified further by removing dollar signs if added by the Scala interpeter) and, if this suite contains nested suites, the result of invoking
toStringon each of the nested suites, separated by commas and surrounded by parentheses.- returns
a user-friendly string for this suite
- Definition Classes
- FeatureSpec → AnyRef → Any
-
def
typeCheckedConstraint[A, B](implicit equivalenceOfA: Equivalence[A], ev: <:<[B, A]): CanEqual[A, B]
- Definition Classes
- TripleEquals → TripleEqualsSupport
-
implicit
def
unconstrainedEquality[A, B](implicit equalityOfA: Equality[A]): CanEqual[A, B]
- Definition Classes
- TripleEquals → TripleEqualsSupport
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
withClue[T](clue: Any)(fun: ⇒ T): T
Executes the block of code passed as the second parameter, and, if it completes abruptly with a
ModifiableMessageexception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it.Executes the block of code passed as the second parameter, and, if it completes abruptly with a
ModifiableMessageexception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it. If clue does not end in a white space character, one space will be added between it and the existing detail message (unless the detail message is not defined).This method allows you to add more information about what went wrong that will be reported when a test fails. Here's an example:
withClue("(Employee's name was: " + employee.name + ")") { intercept[IllegalArgumentException] { employee.getTask(-1) } }
If an invocation of
interceptcompleted abruptly with an exception, the resulting message would be something like:(Employee's name was Bob Jones) Expected IllegalArgumentException to be thrown, but no exception was thrown
- Definition Classes
- Assertions
- Exceptions thrown
NullArgumentExceptionif the passedclueisnull
-
def
withFixture(test: NoArgTest): Outcome
Run the passed test function in the context of a fixture established by this method.
Run the passed test function in the context of a fixture established by this method.
This method should set up the fixture needed by the tests of the current suite, invoke the test function, and if needed, perform any clean up needed after the test completes. Because the
NoArgTestfunction passed to this method takes no parameters, preparing the fixture will require side effects, such as reassigning instancevars in thisSuiteor initializing a globally accessible external database. If you want to avoid reassigning instancevars you can use fixture.Suite.This trait's implementation of
runTestinvokes this method for each test, passing in aNoArgTestwhoseapplymethod will execute the code of the test.This trait's implementation of this method simply invokes the passed
NoArgTestfunction.- test
the no-arg test function to run with a fixture
- Attributes
- protected
- Definition Classes
- TestSuite
-
object
OneArgTest
Companion object for
OneArgTestthat provides factory method to create newOneArgTestinstance by passing in aOneArgTestand aFixtureParam=>Outcomefunction.Companion object for
OneArgTestthat provides factory method to create newOneArgTestinstance by passing in aOneArgTestand aFixtureParam=>Outcomefunction.- Definition Classes
- TestSuite
Deprecated Value Members
-
final
def
execute: Unit
The parameterless
executemethod has been deprecated and will be removed in a future version of ScalaTest. Please invokeexecutewith empty parens instead:execute().The parameterless
executemethod has been deprecated and will be removed in a future version of ScalaTest. Please invokeexecutewith empty parens instead:execute().The original purpose of this method, which simply invokes the other overloaded form of
executewith default parameter values, was to serve as a mini-DSL for the Scala interpreter. It allowed you to execute aSuitein the interpreter with a minimum of finger typing:scala> org.scalatest.run(new SetSpec) An empty Set - should have size 0 - should produce NoSuchElementException when head is invoked !!! IGNORED !!!
However it uses postfix notation, which is now behind a language feature import. Thus better to use the other
executemethod ororg.scalatest.run:(new ExampleSuite).execute() // or org.scalatest.run(new ExampleSuite)
- Definition Classes
- Suite
- Annotations
- @deprecated
- Deprecated
The parameterless execute method has been deprecated and will be removed in a future version of ScalaTest. Please invoke execute with empty parens instead: execute().
-
def
trap[T](f: ⇒ T): Throwable
Trap and return any thrown exception that would normally cause a ScalaTest test to fail, or create and return a new
RuntimeExceptionindicating no exception is thrown.Trap and return any thrown exception that would normally cause a ScalaTest test to fail, or create and return a new
RuntimeExceptionindicating no exception is thrown.This method is intended to be used in the Scala interpreter to eliminate large stack traces when trying out ScalaTest assertions and matcher expressions. It is not intended to be used in regular test code. If you want to ensure that a bit of code throws an expected exception, use
intercept, nottrap. Here's an example interpreter session withouttrap:scala> import org.scalatest._ import org.scalatest._ scala> import Matchers._ import Matchers._ scala> val x = 12 a: Int = 12 scala> x shouldEqual 13 org.scalatest.exceptions.TestFailedException: 12 did not equal 13 at org.scalatest.Assertions$class.newAssertionFailedException(Assertions.scala:449) at org.scalatest.Assertions$.newAssertionFailedException(Assertions.scala:1203) at org.scalatest.Assertions$AssertionsHelper.macroAssertTrue(Assertions.scala:417) at .<init>(<console>:15) at .<clinit>(<console>) at .<init>(<console>:7) at .<clinit>(<console>) at $print(<console>) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:731) at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:980) at scala.tools.nsc.interpreter.IMain.loadAndRunReq$1(IMain.scala:570) at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:601) at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565) at scala.tools.nsc.interpreter.ILoop.reallyInterpret$1(ILoop.scala:745) at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:790) at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:702) at scala.tools.nsc.interpreter.ILoop.processLine$1(ILoop.scala:566) at scala.tools.nsc.interpreter.ILoop.innerLoop$1(ILoop.scala:573) at scala.tools.nsc.interpreter.ILoop.loop(ILoop.scala:576) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:867) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:822) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:822) at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135) at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:822) at scala.tools.nsc.MainGenericRunner.runTarget$1(MainGenericRunner.scala:83) at scala.tools.nsc.MainGenericRunner.process(MainGenericRunner.scala:96) at scala.tools.nsc.MainGenericRunner$.main(MainGenericRunner.scala:105) at scala.tools.nsc.MainGenericRunner.main(MainGenericRunner.scala)
That's a pretty tall stack trace. Here's what it looks like when you use
trap:scala> trap { x shouldEqual 13 } res1: Throwable = org.scalatest.exceptions.TestFailedException: 12 did not equal 13Much less clutter. Bear in mind, however, that if no exception is thrown by the passed block of code, the
trapmethod will create a newNormalResult(a subclass ofThrowablemade for this purpose only) and return that. If the result was theUnitvalue, it will simply say that no exception was thrown:scala> trap { x shouldEqual 12 } res2: Throwable = No exception was thrown.If the passed block of code results in a value other than
Unit, theNormalResult'stoStringwill print the value:scala> trap { "Dude!" } res3: Throwable = No exception was thrown. Instead, result was: "Dude!"Although you can access the result value from the
NormalResult, its type isAnyand therefore not very convenient to use. It is not intended thattrapbe used in test code. The sole intended use case fortrapis decluttering Scala interpreter sessions by eliminating stack traces when executing assertion and matcher expressions.- Definition Classes
- Assertions
- Annotations
- @deprecated
- Deprecated
The trap method is no longer needed for demos in the REPL, which now abreviates stack traces, and will be removed in a future version of ScalaTest