org.scalatest.path

FunSpec

trait FunSpec extends Suite with OneInstancePerTest

A sister trait to org.scalatest.FunSpec that isolates tests by running each test in its own instance of the test class, and for each test, only executing the path leading to that test.

Trait path.FunSpec behaves similarly to trait org.scalatest.FunSpec, except that tests are isolated based on their path. The purpose of path.FunSpec is to facilitate writing specification-style tests for mutable objects in a clear, boilerpate-free way. To test mutable objects, you need to mutate them. Using a path trait, you can make a statement in text, then implement that statement in code (including mutating state), and nest and combine these test/code pairs in any way you wish. Each test will only see the side effects of code that is in blocks that enclose the test. Here's an example:

import org.scalatest.path
import org.scalatest.matchers.ShouldMatchers
import scala.collection.mutable.ListBuffer

class ExampleSpec extends path.FunSpec with ShouldMatchers {
describe("A ListBuffer") {
val buf = ListBuffer.empty[Int] // This implements "A ListBuffer"
it("should be empty when created") {
// This test sees: // val buf = ListBuffer.empty[Int] // So buf is: ListBuffer()
buf should be ('empty) }
describe("when 1 is appended") {
buf += 1 // This implements "when 1 is appended", etc...
it("should contain 1") {
// This test sees: // val buf = ListBuffer.empty[Int] // buf += 1 // So buf is: ListBuffer(1)
buf.remove(0) should equal (1) buf should be ('empty) }
describe("when 2 is appended") {
buf += 2
it("should contain 1 and 2") {
// This test sees: // val buf = ListBuffer.empty[Int] // buf += 1 // buf += 2 // So buf is: ListBuffer(1, 2)
buf.remove(0) should equal (1) buf.remove(0) should equal (2) buf should be ('empty) }
describe("when 2 is removed") {
buf -= 2
it("should contain only 1 again") {
// This test sees: // val buf = ListBuffer.empty[Int] // buf += 1 // buf += 2 // buf -= 2 // So buf is: ListBuffer(1)
buf.remove(0) should equal (1) buf should be ('empty) } }
describe("when 3 is appended") {
buf += 3
it("should contain 1, 2, and 3") {
// This test sees: // val buf = ListBuffer.empty[Int] // buf += 1 // buf += 2 // buf += 3 // So buf is: ListBuffer(1, 2, 3)
buf.remove(0) should equal (1) buf.remove(0) should equal (2) buf.remove(0) should equal (3) buf should be ('empty) } } }
describe("when 88 is appended") {
buf += 88
it("should contain 1 and 88") {
// This test sees: // val buf = ListBuffer.empty[Int] // buf += 1 // buf += 88 // So buf is: ListBuffer(1, 88)
buf.remove(0) should equal (1) buf.remove(0) should equal (88) buf should be ('empty) } } }
it("should have size 0 when created") {
// This test sees: // val buf = ListBuffer.empty[Int] // So buf is: ListBuffer()
buf should have size 0 } } }

Note that the above class is organized by writing a bit of specification text that opens a new block followed by, at the top of the new block, some code that "implements" or "performs" what is described in the text. This is repeated as the mutable object (here, a ListBuffer), is prepared for the enclosed tests. For example:

describe("A ListBuffer") {
  val buf = ListBuffer.empty[Int]

Or:

describe("when 2 is appended") {
  buf += 2

Note also that although each test mutates the ListBuffer, none of the other tests observe those side effects:

it("should contain 1") {

buf.remove(0) should equal (1) // ... }
describe("when 2 is appended") {
buf += 2
it("should contain 1 and 2") {
// This test does not see the buf.remove(0) from the previous test, // so the first element in the ListBuffer is again 1 buf.remove(0) should equal (1) buf.remove(0) should equal (2)

This kind of isolation of tests from each other is a consequence of running each test in its own instance of the test class, and can also be achieved by simply mixing OneInstancePerTest into a regular org.scalatest.FunSpec. However, path.FunSpec takes isolation one step further: a test in a path.FunSpec does not observe side effects performed outside tests in earlier blocks that do not enclose it. Here's an example:

describe("when 2 is removed") {

buf -= 2
// ... }
describe("when 3 is appended") {
buf += 3
it("should contain 1, 2, and 3") {
// This test does not see the buf -= 2 from the earlier "when 2 is removed" block, // because that block does not enclose this test, so the second element in the // ListBuffer is still 2 buf.remove(0) should equal (1) buf.remove(0) should equal (2) buf.remove(0) should equal (3)

Running the full ExampleSpec, shown above, in the Scala interpeter would give you:

scala> import org.scalatest._
import org.scalatest._

scala> run(new ExampleSpec) ExampleSpec: A ListBuffer - should be empty when created   when 1 is appended   - should contain 1   when 2 is appended   - should contain 1 and 2   when 2 is removed   - should contain only 1 again   when 3 is appended   - should contain 1, 2, and 3   when 88 is appended   - should contain 1 and 88 - should have size 0 when created

Note: trait path.FunSpec's approach to isolation was inspired in part by the specsy framework, written by Esko Luontola.

Shared fixtures

A test fixture is objects or other artifacts (such as files, sockets, database connections, etc.) used by tests to do their work. If a fixture is used by only one test, then the definitions of the fixture objects can be local to the method. If multiple tests need to share an immutable fixture, you can simply assign them to instance variables. If multiple tests need to share mutable fixture objects or vars, there's one and only one way to do it in a path.FunSpec: place the mutable objects lexically before the test. Any mutations needed by the test must be placed lexically before and/or after the test. As used here, "Lexically before" means that the code needs to be executed during construction of that test's instance of the test class to reach the test (or put another way, the code is along the "path to the test.") "Lexically after" means that the code needs to be executed to exit the constructor after the test has been executed.

The reason lexical placement is the one and only one way to share fixtures in a path.FunSpec is because all of its lifecycle methods are overridden and declared final. Thus you can't override withFixture, because it is final, or mix in BeforeAndAfter or BeforeAndAfterEach, because both override runTest, which is final in a path.FunSpec. In short:

In a path.FunSpec, if you need some code to execute before a test, place that code lexically before the test. If you need some code to execute after a test, place that code lexically after the test.

The reason the life cycle methods are final, by the way, is to prevent users from attempting to combine a path.FunSpec's approach to isolation with other ways ScalaTest provides to share fixtures or execute tests, because doing so could make the resulting test code hard to reason about. A path.FunSpec's execution model is a bit magical, but because it executes in one and only one way, users should be able to reason about the code. To help you visualize how a path.FunSpec is executed, consider the following variant of ExampleSpec that includes print statements:

import org.scalatest.path
import org.scalatest.matchers.ShouldMatchers
import scala.collection.mutable.ListBuffer

class ExampleSpec extends path.FunSpec with ShouldMatchers {
println("Start of: ExampleSpec") describe("A ListBuffer") {
println("Start of: A ListBuffer") val buf = ListBuffer.empty[Int]
it("should be empty when created") {
println("In test: should be empty when created; buf is: " + buf) buf should be ('empty) }
describe("when 1 is appended") {
println("Start of: when 1 is appended") buf += 1
it("should contain 1") {
println("In test: should contain 1; buf is: " + buf) buf.remove(0) should equal (1) buf should be ('empty) }
describe("when 2 is appended") {
println("Start of: when 2 is appended") buf += 2
it("should contain 1 and 2") {
println("In test: should contain 1 and 2; buf is: " + buf) buf.remove(0) should equal (1) buf.remove(0) should equal (2) buf should be ('empty) }
describe("when 2 is removed") {
println("Start of: when 2 is removed") buf -= 2
it("should contain only 1 again") {
println("In test: should contain only 1 again; buf is: " + buf) buf.remove(0) should equal (1) buf should be ('empty) }
println("End of: when 2 is removed") }
describe("when 3 is appended") {
println("Start of: when 3 is appended") buf += 3
it("should contain 1, 2, and 3") {
println("In test: should contain 1, 2, and 3; buf is: " + buf) buf.remove(0) should equal (1) buf.remove(0) should equal (2) buf.remove(0) should equal (3) buf should be ('empty) } println("End of: when 3 is appended") }
println("End of: when 2 is appended") }
describe("when 88 is appended") {
println("Start of: when 88 is appended") buf += 88
it("should contain 1 and 88") {
println("In test: should contain 1 and 88; buf is: " + buf) buf.remove(0) should equal (1) buf.remove(0) should equal (88) buf should be ('empty) }
println("End of: when 88 is appended") }
println("End of: when 1 is appended") }
it("should have size 0 when created") {
println("In test: should have size 0 when created; buf is: " + buf) buf should have size 0 }
println("End of: A ListBuffer") } println("End of: ExampleSpec") println() }

Running the above version of ExampleSpec in the Scala interpreter will give you output similar to:

scala> import org.scalatest._
import org.scalatest._

scala> run(new ExampleSpec) ExampleSpec: Start of: ExampleSpec Start of: A ListBuffer In test: should be empty when created; buf is: ListBuffer() End of: A ListBuffer End of: ExampleSpec

Start of: ExampleSpec Start of: A ListBuffer Start of: when 1 is appended In test: should contain 1; buf is: ListBuffer(1) ExampleSpec: End of: when 1 is appended End of: A ListBuffer End of: ExampleSpec

Start of: ExampleSpec Start of: A ListBuffer Start of: when 1 is appended Start of: when 2 is appended In test: should contain 1 and 2; buf is: ListBuffer(1, 2) End of: when 2 is appended End of: when 1 is appended End of: A ListBuffer End of: ExampleSpec

Start of: ExampleSpec Start of: A ListBuffer Start of: when 1 is appended Start of: when 2 is appended Start of: when 2 is removed In test: should contain only 1 again; buf is: ListBuffer(1) End of: when 2 is removed End of: when 2 is appended End of: when 1 is appended End of: A ListBuffer End of: ExampleSpec

Start of: ExampleSpec Start of: A ListBuffer Start of: when 1 is appended Start of: when 2 is appended Start of: when 3 is appended In test: should contain 1, 2, and 3; buf is: ListBuffer(1, 2, 3) End of: when 3 is appended End of: when 2 is appended End of: when 1 is appended End of: A ListBuffer End of: ExampleSpec

Start of: ExampleSpec Start of: A ListBuffer Start of: when 1 is appended Start of: when 88 is appended In test: should contain 1 and 88; buf is: ListBuffer(1, 88) End of: when 88 is appended End of: when 1 is appended End of: A ListBuffer End of: ExampleSpec

Start of: ExampleSpec Start of: A ListBuffer In test: should have size 0 when created; buf is: ListBuffer() End of: A ListBuffer End of: ExampleSpec

A ListBuffer - should be empty when created when 1 is appended   - should contain 1   when 2 is appended   - should contain 1 and 2   when 2 is removed   - should contain only 1 again   when 3 is appended   - should contain 1, 2, and 3   when 88 is appended   - should contain 1 and 88 - should have size 0 when created

Note that each test is executed in order of appearance in the path.FunSpec, and that only those println statements residing in blocks that enclose the test being run are executed. Any println statements in blocks that do not form the "path" to a test are not executed in the instance of the class that executes that test.

How it executes

To provide its special brand of test isolation, path.FunSpec executes quite differently from its sister trait in org.scalatest. An org.scalatest.FunSpec registers tests during construction and executes them when run is invoked. An org.scalatest.path.FunSpec, by contrast, runs each test in its own instance while that instance is being constructed. During construction, it registers not the tests to run, but the results of running those tests. When run is invoked on a path.FunSpec, it reports the registered results and does not run the tests again. If run is invoked a second or third time, in fact, a path.FunSpec will each time report the same results registered during construction. If you want to run the tests of a path.FunSpec anew, you'll need to create a new instance and invoke run on that.

A path.FunSpec will create one instance for each "leaf" node it contains. The main kind of leaf node is a test, such as:

// One instance will be created for each test
it("should be empty when created") {
  buf should be ('empty)
}

However, an empty scope (a scope that contains no tests or nested scopes) is also a leaf node:

// One instance will be created for each empty scope
describe("when 99 is added") {
  // A scope is "empty" and therefore a leaf node if it has no
  // tests or nested scopes, though it may have other code (which
  // will be executed in the instance created for that leaf node)
  buf += 99
}

The tests will be executed sequentially, in the order of appearance. The first test (or empty scope, if that is first) will be executed when a class that mixes in path.FunSpec is instantiated. Only the first test will be executed during this initial instance, and of course, only the path to that test. Then, the first time the client uses the initial instance (by invoking one of run, expectedTestsCount, tags, or testNames on the instance), the initial instance will, before doing anything else, ensure that any remaining tests are executed, each in its own instance.

To ensure that the correct path is taken in each instance, and to register its test results, the initial path.FunSpec instance must communicate with the other instances it creates for running any subsequent leaf nodes. It does so by setting a thread-local variable prior to creating each instance (a technique suggested by Esko Luontola). Each instance of path.FunSpec checks the thread-local variable. If the thread-local is not set, it knows it is an initial instance and therefore executes every block it encounters until it discovers, and executes the first test (or empty scope, if that's the first leaf node). It then discovers, but does not execute the next leaf node, or discovers there are no other leaf nodes remaining to execute. It communicates the path to the next leaf node, if any, and the result of running the test it did execute, if any, back to the initial instance. The initial instance repeats this process until all leaf nodes have been executed and all test results registered.

Ignored tests

You mark a test as ignored in an org.scalatest.path.FunSpec in the same manner as in an org.scalatest.FunSpec. Please see the Ignored tests section in its documentation for more information.

Note that a separate instance will be created for an ignored test, and the path to the ignored test will be executed in that instance, but the test function itself will not be executed. Instead, a TestIgnored event will be fired.

Informers

You output information using Informers in an org.scalatest.path.FunSpec in the same manner as in an org.scalatest.FunSpec. Please see the Informers section in its documentation for more information.

Pending tests

You mark a test as pending in an org.scalatest.path.FunSpec in the same manner as in an org.scalatest.FunSpec. Please see the Pending tests section in its documentation for more information.

Note that a separate instance will be created for a pending test, and the path to the ignored test will be executed in that instance, as well as the test function (up until it completes abruptly with a TestPendingException).

Tagging tests

You can place tests into groups by tagging them in an org.scalatest.path.FunSpec in the same manner as in an org.scalatest.FunSpec. Please see the Tagging tests section in its documentation for more information.

Note that one difference between this trait and its sister trait org.scalatest.FunSpec is that because tests are executed at construction time, rather than each time run is invoked, an org.scalatest.path.FunSpec will always execute all non-ignored tests. When run is invoked on a path.FunSpec, if some tests are excluded based on tags, the registered results of running those tests will not be reported. (But those tests will have already run and the results registered.) By contrast, because an org.scalatest.FunSpec only executes tests after run has been called, and at that time the tags to include and exclude are known, only tests selected by the tags will be executed.

In short, in an org.scalatest.FunSpec, tests not selected by the tags to include and exclude specified for the run (via the Filter passed to run) will not be executed. In an org.scalatest.path.FunSpec, by contrast, all non-ignored tests will be executed, each during the construction of its own instance, and tests not selected by the tags to include and exclude specified for a run will not be reported. (One upshot of this is that if you have tests that you want to tag as being slow so you can sometimes exclude them during a run, you probably don't want to put them in a path.FunSpec. Because in a path.Freespec the slow tests will be run regardless, with only their registered results not being reported if you exclude slow tests during a run.)

Shared tests

You can factor out shared tests in an org.scalatest.path.FunSpec in the same manner as in an org.scalatest.FunSpec. Please see the Shared tests section in its documentation for more information.

Nested suites

Nested suites are not allowed in a path.FunSpec. Because a path.FunSpec executes tests eagerly at construction time, registering the results of those test runs and reporting them later when run is invoked, the order of nested suites versus test runs would be different in a org.scalatest.path.FunSpec than in an org.scalatest.FunSpec. In org.scalatest.FunSpec's implementation of run, nested suites are executed then tests are executed. A org.scalatest.path.FunSpec with nested suites would execute these in the opposite order: first tests then nested suites. To help make path.FunSpec code easier to reason about by giving readers of one less difference to think about, nested suites are not allowed. If you want to add nested suites to a path.FunSpec, you can instead wrap them all in a Suites or Specs object. They will be executed in the order of appearance (unless a Distributor is passed, in which case they will execute in parallel).

Durations

Many ScalaTest events include a duration that indicates how long the event being reported took to execute. For example, a TestSucceeded event provides a duration indicating how long it took for that test to execute. A SuiteCompleted event provides a duration indicating how long it took for that entire suite of tests to execute.

In the test completion events fired by a path.FunSpec (TestSucceeded, TestFailed, or TestPending), the durations reported refer to the time it took for the tests to run. This time is registered with the test results and reported along with the test results each time run is invoked. By contrast, the suite completion events fired for a path.FunSpec represent the amount of time it took to report the registered results. (These events are not fired by path.FunSpec, but instead by the entity that invokes run on the path.FunSpec.) As a result, the total time for running the tests of a path.FunSpec, calculated by summing the durations of all the individual test completion events, may be greater than the duration reported for executing the entire suite.

Self Type
FunSpec
Linear Supertypes
OneInstancePerTest, Suite, Serializable, AbstractSuite, Assertions, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Hide All
  2. Show all
  1. FunSpec
  2. OneInstancePerTest
  3. Suite
  4. Serializable
  5. AbstractSuite
  6. Assertions
  7. AnyRef
  8. Any
Visibility
  1. Public
  2. All

Type Members

  1. class Equalizer extends AnyRef

    Class used via an implicit conversion to enable any two objects to be compared with === in assertions in tests.

  2. class ItWord extends AnyRef

    Class that, via an instance referenced from the it field, supports test (and shared test) registration in FunSpecs.

  3. trait NoArgTest extends () ⇒ Unit

    A test function taking no arguments, which also provides a test name and config map.

  4. class TheyWord extends AnyRef

    Class that, via an instance referenced from the they field, supports test (and shared test) registration in FunSpecs.

Value Members

  1. def != (arg0: AnyRef): Boolean

    Attributes
    final
    Definition Classes
    AnyRef
  2. def != (arg0: Any): Boolean

    Attributes
    final
    Definition Classes
    Any
  3. def ## (): Int

    Attributes
    final
    Definition Classes
    AnyRef → Any
  4. def == (arg0: AnyRef): Boolean

    Attributes
    final
    Definition Classes
    AnyRef
  5. def == (arg0: Any): Boolean

    Attributes
    final
    Definition Classes
    Any
  6. def asInstanceOf [T0] : T0

    Attributes
    final
    Definition Classes
    Any
  7. def assert (o: Option[String]): Unit

    Assert that an Option[String] is None.

    Assert that an Option[String] is None. If the condition is None, this method returns normally. Else, it throws TestFailedException with the String value of the Some included in the TestFailedException's detail message.

    This form of assert is usually called in conjunction with an implicit conversion to Equalizer, using a === comparison, as in:

    assert(a === b)
    

    For more information on how this mechanism works, see the documentation for Equalizer.

    o

    the Option[String] to assert

    Definition Classes
    Assertions
  8. def assert (o: Option[String], clue: Any): Unit

    Assert that an Option[String] is None.

    Assert that an Option[String] is None. If the condition is None, this method returns normally. Else, it throws TestFailedException with the String value of the Some, as well as the String obtained by invoking toString on the specified message, included in the TestFailedException's detail message.

    This form of assert is usually called in conjunction with an implicit conversion to Equalizer, using a === comparison, as in:

    assert(a === b, "extra info reported if assertion fails")
    

    For more information on how this mechanism works, see the documentation for Equalizer.

    o

    the Option[String] to assert

    clue

    An objects whose toString method returns a message to include in a failure report.

    Definition Classes
    Assertions
  9. def assert (condition: Boolean, clue: Any): Unit

    Assert that a boolean condition, described in String message, is true.

    Assert that a boolean condition, described in String message, is true. If the condition is true, this method returns normally. Else, it throws TestFailedException with the String obtained by invoking toString on the specified message as the exception's detail message.

    condition

    the boolean condition to assert

    clue

    An objects whose toString method returns a message to include in a failure report.

    Definition Classes
    Assertions
  10. def assert (condition: Boolean): Unit

    Assert that a boolean condition is true.

    Assert that a boolean condition is true. If the condition is true, this method returns normally. Else, it throws TestFailedException.

    condition

    the boolean condition to assert

    Definition Classes
    Assertions
  11. val behave : BehaveWord

    Supports shared test registration in path.FunSpecs.

    Supports shared test registration in path.FunSpecs.

    This field supports syntax such as the following:

    it should behave like nonFullStack(stackWithOneItem)
              ^
    

    For more information and examples of the use of <cod>behave, see the Shared tests section in the main documentation for sister trait org.scalatest.FunSpec.

    Attributes
    protected
  12. def clone (): AnyRef

    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws()
  13. implicit def convertToEqualizer (left: Any): Equalizer

    Implicit conversion from Any to Equalizer, used to enable assertions with === comparisons.

    Implicit conversion from Any to Equalizer, used to enable assertions with === comparisons.

    For more information on this mechanism, see the documentation for Equalizer.

    Because trait Suite mixes in Assertions, this implicit conversion will always be available by default in ScalaTest Suites. This is the only implicit conversion that is in scope by default in every ScalaTest Suite. Other implicit conversions offered by ScalaTest, such as those that support the matchers DSL or invokePrivate, must be explicitly invited into your test code, either by mixing in a trait or importing the members of its companion object. The reason ScalaTest requires you to invite in implicit conversions (with the exception of the implicit conversion for === operator) is because if one of ScalaTest's implicit conversions clashes with an implicit conversion used in the code you are trying to test, your program won't compile. Thus there is a chance that if you are ever trying to use a library or test some code that also offers an implicit conversion involving a === operator, you could run into the problem of a compiler error due to an ambiguous implicit conversion. If that happens, you can turn off the implicit conversion offered by this convertToEqualizer method simply by overriding the method in your Suite subclass, but not marking it as implicit:

    // In your Suite subclass
    override def convertToEqualizer(left: Any) = new Equalizer(left)
    

    left

    the object whose type to convert to Equalizer.

    Attributes
    implicit
    Definition Classes
    Assertions
  14. def describe (description: String)(fun: ⇒ Unit): Unit

    Describe a “subject” being specified and tested by the passed function value.

    Describe a “subject” being specified and tested by the passed function value. The passed function value may contain more describers (defined with describe) and/or tests (defined with it).

    This class's implementation of this method will decide whether to register the description text and invoke the passed function based on whether or not this is part of the current "test path." For the details on this process, see the How it executes section of the main documentation for trait org.scalatest.path.FunSpec.

    Attributes
    protected
  15. def eq (arg0: AnyRef): Boolean

    Attributes
    final
    Definition Classes
    AnyRef
  16. def equals (arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  17. def execute (testName: String = null, configMap: Map[String, Any] = Map(), color: Boolean = true, durations: Boolean = false, shortstacks: Boolean = false, fullstacks: Boolean = false, stats: Boolean = false): Unit

    Executes one or more tests in this Suite, printing results to the standard output.

    Executes one or more tests in this Suite, printing results to the standard output.

    This method invokes run on itself, passing in values that can be configured via the parameters to this method, all of which have default values. This behavior is convenient when working with ScalaTest in the Scala interpreter. Here's a summary of this method's parameters and how you can use them:

    The testName parameter

    If you leave testName at its default value (of null), this method will pass None to the testName parameter of run, and as a result all the tests in this suite will be executed. If you specify a testName, this method will pass Some(testName) to run, and only that test will be run. Thus to run all tests in a suite from the Scala interpreter, you can write:

    scala> (new ExampleSuite).execute()
    

    To run just the test named "my favorite test" in a suite from the Scala interpreter, you would write:

    scala> (new ExampleSuite).execute("my favorite test")
    

    Or:

    scala> (new ExampleSuite).execute(testName = "my favorite test")
    

    The configMap parameter

    If you provide a value for the configMap parameter, this method will pass it to run. If not, the default value of an empty Map will be passed. For more information on how to use a config map to configure your test suites, see the config map section in the main documentation for this trait. Here's an example in which you configure a run with the name of an input file:

    scala> (new ExampleSuite).execute(configMap = Map("inputFileName" -> "in.txt")
    

    The color parameter

    If you leave the color parameter unspecified, this method will configure the reporter it passes to run to print to the standard output in color (via ansi escape characters). If you don't want color output, specify false for color, like this:

    scala> (new ExampleSuite).execute(color = false)
    

    The durations parameter

    If you leave the durations parameter unspecified, this method will configure the reporter it passes to run to not print durations for tests and suites to the standard output. If you want durations printed, specify true for durations, like this:

    scala> (new ExampleSuite).execute(durations = true)
    

    The shortstacks and fullstacks parameters

    If you leave both the shortstacks and fullstacks parameters unspecified, this method will configure the reporter it passes to run to not print stack traces for failed tests if it has a stack depth that identifies the offending line of test code. If you prefer a short stack trace (10 to 15 stack frames) to be printed with any test failure, specify true for shortstacks:

    scala> (new ExampleSuite).execute(shortstacks = true)
    

    For full stack traces, set fullstacks to true:

    scala> (new ExampleSuite).execute(fullstacks = true)
    

    If you specify true for both shortstacks and fullstacks, you'll get full stack traces.

    The stats parameter

    If you leave the stats parameter unspecified, this method will not fire RunStarting and either RunCompleted or RunAborted events to the reporter it passes to run. If you specify true for stats, this method will fire the run events to the reporter, and the reporter will print the expected test count before the run, and various statistics after, including the number of suites completed and number of tests that succeeded, failed, were ignored or marked pending. Here's how you get the stats:

    scala> (new ExampleSuite).execute(stats = true)
    

    To summarize, this method will pass to run:

    • testName - None if this method's testName parameter is left at its default value of null, else Some(testName).
    • reporter - a reporter that prints to the standard output
    • stopper - a Stopper whose apply method always returns false
    • filter - a Filter constructed with None for tagsToInclude and Set() for tagsToExclude
    • configMap - the configMap passed to this method
    • distributor - None
    • tracker - a new Tracker

    Note: In ScalaTest, the terms "execute" and "run" basically mean the same thing and can be used interchangably. The reason this method isn't named run is that it takes advantage of default arguments, and you can't mix overloaded methods and default arguments in Scala. (If named run, this method would have the same name but different arguments than the main run method that takes seven arguments. Thus it would overload and couldn't be used with default argument values.)

    Design note: This method has two "features" that may seem unidiomatic. First, the default value of testName is null. Normally in Scala the type of testName would be Option[String] and the default value would be None, as it is in this trait's run method. The null value is used here for two reasons. First, in ScalaTest 1.5, execute was changed from four overloaded methods to one method with default values, taking advantage of the default and named parameters feature introduced in Scala 2.8. To not break existing source code, testName needed to have type String, as it did in two of the overloaded execute methods prior to 1.5. The other reason is that execute has always been designed to be called primarily from an interpeter environment, such as the Scala REPL (Read-Evaluate-Print-Loop). In an interpreter environment, minimizing keystrokes is king. A String type with a null default value lets users type suite.execute("my test name") rather than suite.execute(Some("my test name")), saving several keystrokes.

    The second non-idiomatic feature is that shortstacks and fullstacks are all lower case rather than camel case. This is done to be consistent with the Shell, which also uses those forms. The reason lower case is used in the Shell is to save keystrokes in an interpreter environment. Most Unix commands, for example, are all lower case, making them easier and quicker to type. In the ScalaTest Shell, methods like shortstacks, fullstacks, and nostats, etc., are designed to be all lower case so they feel more like shell commands than methods.

    testName

    the name of one test to run.

    configMap

    a Map of key-value pairs that can be used by the executing Suite of tests.

    color

    a boolean that configures whether output is printed in color

    durations

    a boolean that configures whether test and suite durations are printed to the standard output

    shortstacks

    a boolean that configures whether short stack traces should be printed for test failures

    fullstacks

    a boolean that configures whether full stack traces should be printed for test failures

    stats

    a boolean that configures whether test and suite statistics are printed to the standard output

    Attributes
    final
    Definition Classes
    Suite
  18. def expect (expected: Any)(actual: Any): Unit

    Expect that the value passed as expected equals the value passed as actual.

    Expect that the value passed as expected equals the value passed as actual. If the actual value equals the expected value (as determined by ==), expect returns normally. Else, expect throws an TestFailedException whose detail message includes the expected and actual values.

    expected

    the expected value

    actual

    the actual value, which should equal the passed expected value

    Definition Classes
    Assertions
  19. def expect (expected: Any, clue: Any)(actual: Any): Unit

    Expect that the value passed as expected equals the value passed as actual.

    Expect that the value passed as expected equals the value passed as actual. If the actual equals the expected (as determined by ==), expect returns normally. Else, if actual is not equal to expected, expect throws an TestFailedException whose detail message includes the expected and actual values, as well as the String obtained by invoking toString on the passed message.

    expected

    the expected value

    clue

    An object whose toString method returns a message to include in a failure report.

    actual

    the actual value, which should equal the passed expected value

    Definition Classes
    Assertions
  20. def expectedTestCount (filter: Filter): Int

    The total number of tests that are expected to run when this path.FunSpec's run method is invoked.

    The total number of tests that are expected to run when this path.FunSpec's run method is invoked.

    This trait's implementation of this method will first ensure that the results of all tests, each run its its own instance executing only the path to the test, are registered. For details on this process see the How it executes section in the main documentation for this trait.

    This trait's implementation of this method returns the size of the testNames List, minus the number of tests marked as ignored as well as any tests excluded by the passed Filter.

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    filter

    a Filter with which to filter tests to count based on their tags

    Attributes
    final
    Definition Classes
    FunSpecSuiteAbstractSuite
  21. def fail (cause: Throwable): Nothing

    Throws TestFailedException, with the passed Throwable cause, to indicate a test failed.

    Throws TestFailedException, with the passed Throwable cause, to indicate a test failed. The getMessage method of the thrown TestFailedException will return cause.toString().

    cause

    a Throwable that indicates the cause of the failure.

    Definition Classes
    Assertions
  22. def fail (message: String, cause: Throwable): Nothing

    Throws TestFailedException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    Throws TestFailedException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    message

    A message describing the failure.

    cause

    A Throwable that indicates the cause of the failure.

    Definition Classes
    Assertions
  23. def fail (message: String): Nothing

    Throws TestFailedException, with the passed String message as the exception's detail message, to indicate a test failed.

    Throws TestFailedException, with the passed String message as the exception's detail message, to indicate a test failed.

    message

    A message describing the failure.

    Definition Classes
    Assertions
  24. def fail (): Nothing

    Throws TestFailedException to indicate a test failed.

    Throws TestFailedException to indicate a test failed.

    Definition Classes
    Assertions
  25. def finalize (): Unit

    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws()
  26. def getClass (): java.lang.Class[_]

    Attributes
    final
    Definition Classes
    AnyRef
  27. def hashCode (): Int

    Definition Classes
    AnyRef → Any
  28. def ignore (testText: String, testTags: Tag*)(testFun: ⇒ Unit): Unit

    Supports registration of a test to ignore.

    Supports registration of a test to ignore.

    For more information and examples of this method's use, see the Ignored tests section in the main documentation for sister trait org.scalatest.FunSpec. Note that a separate instance will be created for an ignored test, and the path to the ignored test will be executed in that instance, but the test function itself will not be executed. Instead, a TestIgnored event will be fired.

    testText

    the specification text, which will be combined with the descText of any surrounding describers to form the test name

    testTags

    the optional list of tags for this test

    testFun

    the test function

    Attributes
    protected
  29. implicit def info : Informer

    Returns an Informer that during test execution will forward strings (and other objects) passed to its apply method to the current reporter.

    Returns an Informer that during test execution will forward strings (and other objects) passed to its apply method to the current reporter. If invoked in a constructor (including within a test, since those are invoked during construction in a path.FunSpec, it will register the passed string for forwarding later when run is invoked. If invoked at any other time, it will throw an exception. This method can be called safely by any thread.

    Attributes
    protected implicit
  30. def intercept [T <: AnyRef] (f: ⇒ Any)(implicit manifest: Manifest[T]): T

    Intercept and return an exception that's expected to be thrown by the passed function value.

    Intercept and return an exception that's expected to be thrown by the passed function value. The thrown exception must be an instance of the type specified by the type parameter of this method. This method invokes the passed function. If the function throws an exception that's an instance of the specified type, this method returns that exception. Else, whether the passed function returns normally or completes abruptly with a different exception, this method throws TestFailedException.

    Note that the type specified as this method's type parameter may represent any subtype of AnyRef, not just Throwable or one of its subclasses. In Scala, exceptions can be caught based on traits they implement, so it may at times make sense to specify a trait that the intercepted exception's class must mix in. If a class instance is passed for a type that could not possibly be used to catch an exception (such as String, for example), this method will complete abruptly with a TestFailedException.

    f

    the function value that should throw the expected exception

    manifest

    an implicit Manifest representing the type of the specified type parameter.

    returns

    the intercepted exception, if it is of the expected type

    Definition Classes
    Assertions
  31. def isInstanceOf [T0] : Boolean

    Attributes
    final
    Definition Classes
    Any
  32. val it : ItWord

    Supports test (and shared test) registration in FunSpecs.

    Supports test (and shared test) registration in FunSpecs.

    This field supports syntax such as the following:

    it("should be empty")
    ^
    

     class="stExamples"
    it should behave like nonFullStack(stackWithOneItem)
    ^
    

    For more information and examples of the use of the it field, see the main documentation for this trait.

    Attributes
    protected
  33. def ne (arg0: AnyRef): Boolean

    Attributes
    final
    Definition Classes
    AnyRef
  34. def nestedSuites : List[Suite]

    Returns an empty list.

    Returns an empty list.

    This lifecycle method is unused by this trait. If invoked, it will return an empty list, because nested suites are not allowed in a path.FunSpec. Because a path.FunSpec executes tests eagerly at construction time, registering the results of those test runs and reporting them later, the order of nested suites versus test runs would be different in a org.scalatest.path.FunSpec than in an org.scalatest.FunSpec. In an org.scalatest.FunSpec, nested suites are executed then tests are executed. In an org.scalatest.path.FunSpec it would be the opposite. To make the code easy to reason about, therefore, this is just not allowed. If you want to add nested suites to a path.FunSpec, you can instead wrap them all in a Suites or Specs object and put them in whatever order you wish.

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    Attributes
    final
    Definition Classes
    FunSpecSuiteAbstractSuite
  35. def newInstance : FunSpec

    Construct a new instance of this Suite.

    Construct a new instance of this Suite.

    This trait's implementation of runTests invokes this method to create a new instance of this Suite for each test. This trait's implementation of this method uses reflection to call this.getClass.newInstance. This approach will succeed only if this Suite's class has a public, no-arg constructor. In most cases this is likely to be true, because to be instantiated by ScalaTest's Runner a Suite needs a public, no-arg constructor. However, this will not be true of any Suite defined as an inner class of another class or trait, because every constructor of an inner class type takes a reference to the enclosing instance. In such cases, and in cases where a Suite class is explicitly defined without a public, no-arg constructor, you will need to override this method to construct a new instance of the Suite in some other way.

    Here's an example of how you could override newInstance to construct a new instance of an inner class:

    import org.scalatest.Suite
    
    class Outer { class InnerSuite extends Suite with OneInstancePerTest { def testOne() {} def testTwo() {} override def newInstance = new InnerSuite } }

    Definition Classes
    FunSpecOneInstancePerTest
  36. def notify (): Unit

    Attributes
    final
    Definition Classes
    AnyRef
  37. def notifyAll (): Unit

    Attributes
    final
    Definition Classes
    AnyRef
  38. def pending : PendingNothing

    Throws TestPendingException to indicate a test is pending.

    Throws TestPendingException to indicate a test is pending.

    A pending test is one that has been given a name but is not yet implemented. The purpose of pending tests is to facilitate a style of testing in which documentation of behavior is sketched out before tests are written to verify that behavior (and often, the before the behavior of the system being tested is itself implemented). Such sketches form a kind of specification of what tests and functionality to implement later.

    To support this style of testing, a test can be given a name that specifies one bit of behavior required by the system being tested. The test can also include some code that sends more information about the behavior to the reporter when the tests run. At the end of the test, it can call method pending, which will cause it to complete abruptly with TestPendingException. Because tests in ScalaTest can be designated as pending with TestPendingException, both the test name and any information sent to the reporter when running the test can appear in the report of a test run. (In other words, the code of a pending test is executed just like any other test.) However, because the test completes abruptly with TestPendingException, the test will be reported as pending, to indicate the actual test, and possibly the functionality it is intended to test, has not yet been implemented.

    Note: This method always completes abruptly with a TestPendingException. Thus it always has a side effect. Methods with side effects are usually invoked with parentheses, as in pending(). This method is defined as a parameterless method, in flagrant contradiction to recommended Scala style, because it forms a kind of DSL for pending tests. It enables tests in suites such as FunSuite or FunSpec to be denoted by placing "(pending)" after the test name, as in:

    test("that style rules are not laws") (pending)
    

    Readers of the code see "pending" in parentheses, which looks like a little note attached to the test name to indicate it is pending. Whereas "(pending()) looks more like a method call, "(pending)" lets readers stay at a higher level, forgetting how it is implemented and just focusing on the intent of the programmer who wrote the code.

    Definition Classes
    Suite
  39. def pendingUntilFixed (f: ⇒ Unit): Unit

    Execute the passed block of code, and if it completes abruptly, throw TestPendingException, else throw TestFailedException.

    Execute the passed block of code, and if it completes abruptly, throw TestPendingException, else throw TestFailedException.

    This method can be used to temporarily change a failing test into a pending test in such a way that it will automatically turn back into a failing test once the problem originally causing the test to fail has been fixed. At that point, you need only remove the pendingUntilFixed call. In other words, a pendingUntilFixed surrounding a block of code that isn't broken is treated as a test failure. The motivation for this behavior is to encourage people to remove pendingUntilFixed calls when there are no longer needed.

    This method facilitates a style of testing in which tests are written before the code they test. Sometimes you may encounter a test failure that requires more functionality than you want to tackle without writing more tests. In this case you can mark the bit of test code causing the failure with pendingUntilFixed. You can then write more tests and functionality that eventually will get your production code to a point where the original test won't fail anymore. At this point the code block marked with pendingUntilFixed will no longer throw an exception (because the problem has been fixed). This will in turn cause pendingUntilFixed to throw TestFailedException with a detail message explaining you need to go back and remove the pendingUntilFixed call as the problem orginally causing your test code to fail has been fixed.

    f

    a block of code, which if it completes abruptly, should trigger a TestPendingException

    Definition Classes
    Suite
  40. def run (testName: Option[String], reporter: Reporter, stopper: Stopper, filter: Filter, configMap: Map[String, Any], distributor: Option[Distributor], tracker: Tracker): Unit

    Runs this path.FunSpec, reporting test results that were registered when the tests were run, each during the construction of its own instance.

    Runs this path.FunSpec, reporting test results that were registered when the tests were run, each during the construction of its own instance.

    This trait's implementation of this method will first ensure that the results of all tests, each run its its own instance executing only the path to the test, are registered. For details on this process see the How it executes section in the main documentation for this trait.

    If testName is None, this trait's implementation of this method will report the registered results for all tests except any excluded by the passed Filter. If testName is defined, it will report the results of only that named test. Because a path.FunSpec is not allowed to contain nested suites, this trait's implementation of this method does not call runNestedSuites.

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    testName

    an optional name of one test to run. If None, all relevant tests should be run. I.e., None acts like a wildcard that means run all relevant tests in this Suite.

    reporter

    the Reporter to which results will be reported

    stopper

    the Stopper that will be consulted to determine whether to stop execution early.

    filter

    a Filter with which to filter tests based on their tags

    configMap

    a Map of key-value pairs that can be used by the executing Suite of tests.

    distributor

    an optional Distributor, into which to put nested Suites to be run by another entity, such as concurrently by a pool of threads. If None, nested Suites will be run sequentially.

    tracker

    a Tracker tracking Ordinals being fired by the current thread.

    Attributes
    final
    Definition Classes
    FunSpecSuiteAbstractSuite
  41. def runNestedSuites (reporter: Reporter, stopper: Stopper, filter: Filter, configMap: Map[String, Any], distributor: Option[Distributor], tracker: Tracker): Unit

    This lifecycle method is unused by this trait, and is implemented to do nothing.

    This lifecycle method is unused by this trait, and is implemented to do nothing. If invoked, it will just return immediately.

    Nested suites are not allowed in a path.FunSpec. Because a path.FunSpec executes tests eagerly at construction time, registering the results of those test runs and reporting them later, the order of nested suites versus test runs would be different in a org.scalatest.path.FunSpec than in an org.scalatest.FunSpec. In an org.scalatest.FunSpec, nested suites are executed then tests are executed. In an org.scalatest.path.FunSpec it would be the opposite. To make the code easy to reason about, therefore, this is just not allowed. If you want to add nested suites to a path.FunSpec, you can instead wrap them all in a Suites or Specs object and put them in whatever order you wish.

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    reporter

    the Reporter to which results will be reported

    stopper

    the Stopper that will be consulted to determine whether to stop execution early.

    filter

    a Filter with which to filter tests based on their tags

    configMap

    a Map of key-value pairs that can be used by the executing Suite of tests.

    distributor

    an optional Distributor, into which to put nested Suites to be run by another entity, such as concurrently by a pool of threads. If None, nested Suites will be run sequentially.

    tracker

    a Tracker tracking Ordinals being fired by the current thread.

    Attributes
    protected final
    Definition Classes
    FunSpecSuiteAbstractSuite
  42. def runTest (testName: String, reporter: Reporter, stopper: Stopper, configMap: Map[String, Any], tracker: Tracker): Unit

    Runs a test.

    Runs a test.

    This trait's implementation of this method will first ensure that the results of all tests, each run its its own instance executing only the path to the test, are registered. For details on this process see the How it executes section in the main documentation for this trait.

    This trait's implementation reports the test results registered with the name specified by testName. Each test's name is a concatenation of the text of all describers surrounding a test, from outside in, and the test's spec text, with one space placed between each item. (See the documentation for testNames for an example.)

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    testName

    the name of one test to execute.

    reporter

    the Reporter to which results will be reported

    stopper

    the Stopper that will be consulted to determine whether to stop execution early.

    configMap

    a Map of properties that can be used by this FreeSpec's executing tests.

    tracker

    a Tracker tracking Ordinals being fired by the current thread.

    Attributes
    protected final
    Definition Classes
    FunSpecSuiteAbstractSuite
  43. def runTests (testName: Option[String], reporter: Reporter, stopper: Stopper, filter: Filter, configMap: Map[String, Any], distributor: Option[Distributor], tracker: Tracker): Unit

    This lifecycle method is unused by this trait, and will complete abruptly with UnsupportedOperationException if invoked.

    This lifecycle method is unused by this trait, and will complete abruptly with UnsupportedOperationException if invoked.

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    testName

    an optional name of one test to run. If None, all relevant tests should be run. I.e., None acts like a wildcard that means run all relevant tests in this Suite.

    reporter

    the Reporter to which results will be reported

    stopper

    the Stopper that will be consulted to determine whether to stop execution early.

    filter

    a Filter with which to filter tests based on their tags

    configMap

    a Map of key-value pairs that can be used by the executing Suite of tests.

    distributor

    an optional Distributor, into which to put nested Suites to be run by another entity, such as concurrently by a pool of threads. If None, nested Suites will be run sequentially.

    tracker

    a Tracker tracking Ordinals being fired by the current thread.

    Attributes
    protected final
    Definition Classes
    FunSpecOneInstancePerTestSuiteAbstractSuite
  44. val styleName : String

    Suite style name.

    Suite style name.

    Attributes
    final
    Definition Classes
    FunSpecSuiteAbstractSuite
  45. def suiteName : String

    A user-friendly suite name for this Suite.

    A user-friendly suite name for this Suite.

    This trait's implementation of this method returns the simple name of this object's class. This trait's implementation of runNestedSuites calls this method to obtain a name for Reports to pass to the suiteStarting, suiteCompleted, and suiteAborted methods of the Reporter.

    returns

    this Suite object's suite name.

    Definition Classes
    Suite
  46. def synchronized [T0] (arg0: ⇒ T0): T0

    Attributes
    final
    Definition Classes
    AnyRef
  47. def tags : Map[String, Set[String]]

    A Map whose keys are String tag names to which tests in this path.FreeSpec belong, and values the Set of test names that belong to each tag.

    A Map whose keys are String tag names to which tests in this path.FreeSpec belong, and values the Set of test names that belong to each tag. If this path.FreeSpec contains no tags, this method returns an empty Map.

    This trait's implementation of this method will first ensure that the results of all tests, each run its its own instance executing only the path to the test, are registered. For details on this process see the How it executes section in the main documentation for this trait.

    This trait's implementation returns tags that were passed as strings contained in Tag objects passed to methods it and ignore.

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    Attributes
    final
    Definition Classes
    FunSpecSuiteAbstractSuite
  48. def testNames : Set[String]

    An immutable Set of test names.

    An immutable Set of test names. If this FunSpec contains no tests, this method returns an empty Set.

    This trait's implementation of this method will first ensure that the results of all tests, each run its its own instance executing only the path to the test, are registered. For details on this process see the How it executes section in the main documentation for this trait.

    This trait's implementation of this method will return a set that contains the names of all registered tests. The set's iterator will return those names in the order in which the tests were registered. Each test's name is composed of the concatenation of the text of each surrounding describer, in order from outside in, and the text of the example itself, with all components separated by a space. For example, consider this FunSpec:

    import org.scalatest.path
    
    class StackSpec extends path.FunSpec { describe("A Stack") { describe("when not empty") { "must allow me to pop" in {} } describe("when not full") { "must allow me to push" in {} } } }

    Invoking testNames on this FunSpec will yield a set that contains the following two test name strings:

    "A Stack when not empty must allow me to pop"
    "A Stack when not full must allow me to push"
    

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    Attributes
    final
    Definition Classes
    FunSpecSuiteAbstractSuite
  49. val they : TheyWord

    Supports test (and shared test) registration in FunSpecs.

    Supports test (and shared test) registration in FunSpecs.

    This field supports syntax such as the following:

    it("should be empty")
    ^
    

     class="stExamples"
    it should behave like nonFullStack(stackWithOneItem)
    ^
    

    For more information and examples of the use of the it field, see the main documentation for this trait.

    Attributes
    protected
  50. def toString (): String

    Definition Classes
    AnyRef → Any
  51. def wait (): Unit

    Attributes
    final
    Definition Classes
    AnyRef
    Annotations
    @throws()
  52. def wait (arg0: Long, arg1: Int): Unit

    Attributes
    final
    Definition Classes
    AnyRef
    Annotations
    @throws()
  53. def wait (arg0: Long): Unit

    Attributes
    final
    Definition Classes
    AnyRef
    Annotations
    @throws()
  54. def withClue [T] (clue: Any)(fun: ⇒ T): T

    Executes the block of code passed as the second parameter, and, if it completes abruptly with a ModifiableMessage exception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it.

    Executes the block of code passed as the second parameter, and, if it completes abruptly with a ModifiableMessage exception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it. If clue does not end in a white space character, one space will be added between it and the existing detail message (unless the detail message is not defined).

    This method allows you to add more information about what went wrong that will be reported when a test fails. Here's an example:

    withClue("(Employee's name was: " + employee.name + ")") {
      intercept[IllegalArgumentException] {
        employee.getTask(-1)
      }
    }
    

    If an invocation of intercept completed abruptly with an exception, the resulting message would be something like:

    (Employee's name was Bob Jones) Expected IllegalArgumentException to be thrown, but no exception was thrown
    

    Definition Classes
    Assertions
  55. def withFixture (test: NoArgTest): Unit

    This lifecycle method is unused by this trait, and will complete abruptly with UnsupportedOperationException if invoked.

    This lifecycle method is unused by this trait, and will complete abruptly with UnsupportedOperationException if invoked.

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    test

    the no-arg test function to run with a fixture

    Attributes
    final
    Definition Classes
    FunSpecSuiteAbstractSuite

Inherited from OneInstancePerTest

Inherited from Suite

Inherited from Serializable

Inherited from AbstractSuite

Inherited from Assertions

Inherited from AnyRef

Inherited from Any